{"title":"Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island","authors":"Hyunho Jeon","doi":"10.3741/JKWRA.2021.54.10.835","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.835","url":null,"abstract":"In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122702787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship between gross primary production and environmental variables during drought season in South Korea","authors":"Jongmin Park","doi":"10.3741/JKWRA.2021.54.10.779","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.779","url":null,"abstract":"Water stress and environmental drivers are important factors to explain the variance of gross primary production (GPP). Environmental drivers are used to generate GPP in Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm and process-based model. However, MODIS algorithm only consider the vapor pressure deficit (VPD) data while the process-based biogeochemical model also uses limited data to express water stress. We compared the relationship between environmental drivers and GPP from eddy covariance method, MODIS algorithm, and Community Land Model 4 (CLM 4) simulation in normal years and drought years. To consider water stress specifically, we used VPD and evaporative fraction (EF). We evaluated the effects from environmental drivers and EF towards GPP products using the structural equation modeling (SEM) in South Korea. We found that GPP products from MODIS algorithm and model simulation results were not restricted from VPD data if VPD was underestimated. We also found that in the cropland area, irrigation effects can relieve VPD effects to GPP. However, GPP products derived from MODIS and CLM 4 had limitation to explain the irrigation effects to GPP. Overall, these results will enhance the understanding of GPP products derived from MODIS and CLM 4.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127645167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff","authors":"Dongkyun Kim","doi":"10.3741/JKWRA.2021.54.10.795","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.795","url":null,"abstract":"In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122126723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of the spatiotemporal vulnerability assessment method for groundwater resources management at mountainous regions in Korea considering surface water-groundwater interactions","authors":"Jaebeom Lee","doi":"10.3741/JKWRA.2021.54.10.807","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.807","url":null,"abstract":"In this study, assessment of vulnerability in the management of spatio-temporal groundwater resources considering the surface waterground water interactions was conducted in administrative districts of mountainous regions in Korea. Mountainous regions were classified into four regions and spatial groundwater resources management vulnerability assessment criteria were selected to consider the surface water-ground water interactions. Paju in the central mountainous region, Gapyeongin the mountains region, Gurye in the southwestern mountainous region, and Yangsan in the southeastern mountainous region were selected as a result of the selection of vulnerable area for groundwater resources management. Assessment of the Monthly vulnerability to groundwater resource management due to changes in groundwater levels and infiltration was carried out in the selected areas. As a result of monthly vulnerability to groundwater resources management, December ~ Feburary was assessed as vulnerable to groundwater resource management. The results of this study are expected to contribute to the more efficient groundwater resource management measures by administrative district","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"130 8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124244767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model","authors":"Jiyoung Yoo","doi":"10.3741/JKWRA.2021.54.10.769","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.769","url":null,"abstract":"This study investigated the change of the achievement rate of the target water quality conditioned on the occurrence of severe drought, to assess the effects of meteorological drought on the water quality management in the Nakdong River basin. Using three drought indices with difference time scales such as 30-, 60-, 90-day, i.e., SPI30, SPI60, SPI90, and three water quality indicators such as biochemical oxygen demand (BOD), total organic carbon (TOC), and total phosphorus (T-P), we first analyzed the relationship between severe drought occurrence water quality change in mid-sized watersheds, and identified the watersheds in which water quality was highly affected by severe drought. The Bayesian network models were constructed for the watersheds to probabilistically assess the relationship between severe drought and water quality management. Among 22 mid-sized watersheds in the Nakdong River basin, four watersheds, such as #2005, #2018, #2021, and #2022, had high environmental vulnerability to severe drought. In addition, severe drought affected spring and fall water quality in the watershed #2021, summer water quality in the #2005, and winter water quality in the #2022. The causal relationship between drought and water quality management is usufaul in proactive drought management.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128909548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of applicability of linkage modeling using PHABSIM and SWAT","authors":"Kim Seong-Joon","doi":"10.3741/JKWRA.2021.54.10.819","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.819","url":null,"abstract":"This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133659811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information","authors":"Jeo Lee","doi":"10.3741/JKWRA.2021.54.10.747","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.747","url":null,"abstract":"Quantification of extreme rainfall is very important in establishing a flood protection plan, and a general measure of extreme rainfall is expressed as an T-year return level. In this study, a method was proposed for quantifying spatial distribution and uncertainty of daily rainfall depths with various return periods using a hierarchical Bayesian model combined with climate and geographical information, and was applied to the Seoul-Incheon-Gyeonggi region. The annual maximum daily rainfall depth of six automated synoptic observing system weather stations of the Korea Meteorological Administration in the study area was fitted to the generalized extreme value distribution. The applicability and reliability of the proposed method were investigated by comparing daily rainfall quantiles for various return levels derived from the at-site frequency analysis and the regional frequency analysis based on the index flood method. The uncertainty of the regional frequency analysis based on the index flood method was found to be the greatest at all stations and all return levels, and it was confirmed that the reliability of the regional frequency analysis based on the hierarchical Bayesian model was the highest. The proposed method can be used to generate the rainfall quantile maps for various return levels in the Seoul-Incheon-Gyeonggi region and other regions with similar spatial sizes.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116719240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study on the practical use of smart meter end-user demand data","authors":"G. Park","doi":"10.3741/JKWRA.2021.54.10.759","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.10.759","url":null,"abstract":"This work introduces a new approach that classifies individual household water usage by examining the characteristics of smart meter end-user demand data. Here, one of the most well-known unsupervised machine learning, K-means algorithm, is applied to classify water consumptions by each household. The intensity and duration of end-user demands are used as main features to determine the households with similar water consumption pattern. The results showed that 21 households are classified into 13 clusters with each cluster having one, two, three, or five houses. The reasoning why multiple households are classified into the same cluster is described in this paper with respect to the collected data and end-user water consumption behavior.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133631850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions","authors":"Jeonghyeon Choi","doi":"10.3741/JKWRA.2021.54.9.681","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.9.681","url":null,"abstract":"","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116446076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal chlorine residual prediction in water distribution networks using a hierarchical water quality simulation technique","authors":"Gimoon Kang Doosun Hwang Taemun Jeong","doi":"10.3741/JKWRA.2021.54.9.643","DOIUrl":"https://doi.org/10.3741/JKWRA.2021.54.9.643","url":null,"abstract":"","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125742085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}