{"title":"Effect of artificial recharge on submarine groundwater discharge: a Belgian case study","authors":"M. Paepen, K. Walraevens, T. Hermans","doi":"10.5194/EGUSPHERE-EGU21-7495","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-7495","url":null,"abstract":"<p>The Belgian coastal phreatic aquifer is mostly characterized by salty/brackish pore water at shallow depth. The eolian dunes delimiting the sandy beach are one of the few locations where fresh potable water can be found. The drinking water demand of the coastal region is putting high pressure on these water resources, especially during the touristic summer season. Also, the dryer summers that were faced over the last years increase the need for solutions.</p><p>At Oostduinkerke, the Intercommunale Waterleidingsmaatschappij van Veurne-Ambacht (IWVA) combines the pumping of groundwater in the dunes with artificial surface (since 2002) and underground recharge (since 2014) for more sustainable exploitation. The infiltrating water is treated effluent from a nearby sewage treatment plant (Aquafin, Wulpen). The recharge in the dunes reduces the risk of attracting salty/brackish water from the North Sea and the lower lying polder area in the South and allows for more stable groundwater levels, especially around the infiltration lake.</p><p>To assess the efficiency of the managed aquifer recharge project, we collected electrical resistivity tomography (ERT) data offshore, on the beach, and part of the dunes. Marine continuous resistivity profiling (CRP) were performed during both low and high tide. The latter provide a good overlap with the land ERT. The profiles were collected in front of the IWVA site, as well as, to the west and east, to assess the lateral variation of the salt-freshwater distribution in the aquifer. Based on the electrical resistivity distribution, we are able to identify the patterns of submarine groundwater discharge (SGD) and saltwater intrusion in the study area.</p><p>The infiltration of treated wastewater directly affects the piezometric levels of the surrounding area. Before the exploitation started in the dunes (1947), the natural freshwater heads were higher west of the infiltration area, due to the presence of a shallow clay layer (Vandenbohede et al., 2008). The higher hydraulic heads are also seen on recent groundwater models (Lebbe, 2017), but despite the larger hydraulic gradient in the West, the pore water resistivity seems to be higher in front of the IWVA site based on our data. Also, the zone of discharge is found below the low water line in front of the infiltration site, while it is seen on the beach to the west and east. We can assume that the SGD flux is largest in front of the recharge site (Paepen et al., 2020). Therefore, SGD seems to be enhanced by artificial recharge in this area. Further research is needed to validate this.</p><p>Lebbe, L. (2017). Grondwatermodel van de geplande wijzigingen in waterwinning Sint-André. Opdrachtgever: Intercommunale Waterleidingsmaatschappij van Veurne Ambacht (IWVA).</p><p>Paepen, M., Hanssens, D., Smedt, P. D., Walraevens, K., & Hermans, T. (2020). Combining resistivity and frequency domain electromagnetic methods to investigate submarine groundwater discharge in t","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91338172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Rudenko, D. Dettmering, M. Bloßfeld, J. Zeitlhöfler, Riva Alkahal
{"title":"On the current accuracy of altimetry satellite orbits","authors":"S. Rudenko, D. Dettmering, M. Bloßfeld, J. Zeitlhöfler, Riva Alkahal","doi":"10.5194/EGUSPHERE-EGU21-12148","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-12148","url":null,"abstract":"<p><span>Precise orbits of altimetry satellites are a prerequisite for the investigation of global, regional, and coastal sea levels together with their changes, since accurate orbit information is required for the reliable determination of the water surface height (distance between the altimeter position in space and the water surface). Orbits of altimetry satellites are nowadays usually computed using DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), SLR (Satellite Laser Ranging), and, of some satellites, GPS (Global Positioning System) observations of a global network of tracking stations. Significant progress in the improvement of altimetry satellite orbit quality has been achieved in the last 30 years. However, the differences of the sea level and its trend computed using up-to-date orbit solutions derived at various institutions using different software packages, types of observations (DORIS+SLR as compared to GPS+DORIS) and different up-to-date models still exceed the requirements of the Global Climate Observing System for the uncertainties of the regional sea level </span><span>(< 1 cm) and its trend (< 1 mm/year). </span></p><p><span>In this study, we evaluate the current accuracy of orbits of altimetry satellites derived by various institutions in the state-of-the-art reference frames using up-to-date background models for precise orbit determination by using various observation types. We present some results of our analysis of geographically correlated errors and radial orbit differences for various orbit solutions. We also discuss </span><span>possible reasons </span><span>causing the orbit differences and potential ways to reduce them. </span></p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"578 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77010169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Göttl, A. Groh, M. Kappelsberger, Undine Strößenreuther, L. Schröder, V. Helm, M. Schmidt, F. Seitz
{"title":"The influence of Antarctic and Greenland ice loss on polar motion: an assessment based on GRACE and multi-mission satellite altimetry","authors":"F. Göttl, A. Groh, M. Kappelsberger, Undine Strößenreuther, L. Schröder, V. Helm, M. Schmidt, F. Seitz","doi":"10.5194/egusphere-egu21-2564","DOIUrl":"https://doi.org/10.5194/egusphere-egu21-2564","url":null,"abstract":"<p>Increasing ice loss of the Antarctic and Greenland Ice Sheets (AIS, GrIS) due to global climate change affects the orientation of the Earth’s spin axis with respect to an Earth-fixed reference system (polar motion). Ice mass changes in Antarctica and Greenland are observed by the Gravity Recovery and Climate Experiment (GRACE) in terms of time variable gravity field changes and derived from surface elevation changes measured by satellite radar and laser altimeter missions such as ENVISAT, CryoSat-2 and ICESat. Beside the limited spatial resolution, the accuracy of GRACE ice mass change estimates is limited by signal noise (meridional error stripes), leakage effects and uncertainties of the glacial isostatic adjustment (GIA) models, whereas the accuracy of satellite altimetry derived ice mass changes is limited by waveform retracking, slope related relocation errors, firn compaction and the density assumption used in the volume-to-mass conversion.</p><p> </p><p>In this study we use different GRACE gravity field models (CSR RL06M, JPL RL06M, ITSG-Grace2018) and satellite altimetry data (from TU Dresden, University of Leeds, Alfred Wegener Institute) to assess the accuracy of the gravimetry and altimetry derived polar motion excitation functions. We show that due to the combination of individual solutions, systematic and random errors of the data processing can be reduced and the robustness of the geodetic derived AIS and GrIS polar motion excitation functions can be increased. Based on these investigations we found that AIS mass changes induce the pole position vector to drift along the 60° East meridian by 2 mas/yr during the study period 2003-2015, whereas GrIS mass changes cause the pole vector to drift along the 45° West meridian by 3 mas/yr.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75788330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Bemporad, O. Katushkina, V. Izmodenov, D. Koutroumpa, E. Quémerais
{"title":"Evolution of solar wind flows from the inner corona to 1 AU: constraints provided by SOHO UVCS and SWAN data","authors":"A. Bemporad, O. Katushkina, V. Izmodenov, D. Koutroumpa, E. Quémerais","doi":"10.5194/egusphere-egu21-11921","DOIUrl":"https://doi.org/10.5194/egusphere-egu21-11921","url":null,"abstract":"<p>The Sun modulates with the solar wind flow the shape of the whole Heliosphere interacting with the surrounding interstellar medium. Recent results from IBEX and INCA experiments, as well as recent measurements from Voyager 1 and 2, demonstrated that this interaction is much more complex and subject to temporal and heliolatitudinal variations than previously thought. These variations could be also related with the evolution of solar wind during its journey through the Heliosphere. Hence, understanding how the solar wind evolves from its acceleration region in the inner corona to the Heliospheric boundaries is very important.</p><p>In this work, SWAN Lyman-α full-sky observations from SOHO are combined for the very first time with measurements acquired in the inner corona by SOHO UVCS and LASCO instruments, to trace the solar wind expansion from the Sun to 1 AU. The solar wind mass flux in the inner corona was derived over one full solar rotation period in 1997, based on LASCO polarized brightness measurements, and on the Doppler dimming technique applied to UVCS Lyman-α emission from neutral H coronal atoms due to resonant scattering of chromospheric radiation. On the other hand, the SWAN Lyman-α emission (due to back-scattering from neutral H atoms in the interstellar medium) was analyzed based on numerical models of the interstellar hydrogen distribution in the heliosphere and the radiation transfer. The SWAN full-sky Lyman-α intensity maps are used for solving of the inverse problem and deriving of the solar wind mass flux at 1 AU from the Sun as a function of heliolatitude. First results from this comparison for a chosen time period in 1997 are described here, and possible future applications for Solar Orbiter data are discussed.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85339939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hussain, N. Khoshnevis, B. Meulenbroek, Wouter R.L. van der Star, H. Bruining, J. Claringbould, A. Reerink, K. Wolf
{"title":"Modelling Mineral-Scaling in Geothermal Reservoirs Using Both a Local Equilibrium and a Kinetics Approach","authors":"A. Hussain, N. Khoshnevis, B. Meulenbroek, Wouter R.L. van der Star, H. Bruining, J. Claringbould, A. Reerink, K. Wolf","doi":"10.5194/EGUSPHERE-EGU21-16033","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-16033","url":null,"abstract":"<p>              When producing heat from a geothermal well, the produced water cools down in the heat exchanger, and experiencing a lower pressure in the surface processing-facility (1 – 10 bar) than in the reservoir (100 – 300 bar). The decrease in pressure may cause gas to come out of solution. This decrease in temperature and degassing of the produced water may cause precipitation and dissolution (mineralization) to occur. After the produced water is cooled down, it is reinjected into the reservoir through an injection well. Mineralization in the reservoir restricts the flow path of the injected water, resulting in reduced injectivity. Consequently, more energy is required by the injection pump, which results in additional costs, and thereby reduces the project’s economic return.             <br>              When numerically modeling mineralization in a geothermal reservoir, accounting for the reaction kinetics can be computationally expensive. The simulations can be made less expensive by assuming local equilibrium between the reactants and reaction-products; but using this approach might give results that are not in agreement with experimental findings. <br>              Here we present an analytical model for mineral precipitation in a low-enthalpy geothermal reservoir. We compare the kinetics of the relevant reaction terms with respect to the transport terms (heat and flow) to determine whether the local equilibrium approach (LEA) or kinetics approach (KA) is appropriate for modeling a specific reaction. We focus on the near-wellbore region in the reservoir, where precipitation can behave as a ‘skin’; when assuming radial-flow, precipitation in the near-wellbore region has a more dramatic impact on the injectivity than precipitation further downstream in the reservoir.       <br>              Using numerical simulations we validate the approach to use different methods of geochemical modelling based on the reaction speed and its potential impact on computation time. <br>              Based on our analysis on mineralization in the near-wellbore-region, the three different reaction regimes can be distinguished when comparing the time-scale of reaction to the time-scale of transport, viz.: (1) <strong>fast reactions</strong> (mineralization can be considered instantaneous and modelling these reactions using LEA or KA does not lead to significantly different simulation results); (2) <strong>very slow reactions</strong> (no significant change in ion concentrations in the region of interest, whether these r","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"199 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79670149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monitoring and Modelling of ionospheric disturbances by means of GRACE, GOCE and Swarm in-situ observations","authors":"M. Schmidt, A. Goss, E. Erdogan","doi":"10.5194/egusphere-egu21-14214","DOIUrl":"https://doi.org/10.5194/egusphere-egu21-14214","url":null,"abstract":"<p>The main objective of the ESA-funded project COSTO (Contribution of Swarm data to the prompt detection of Tsunamis and other natural hazards) is to better characterize, understand and discover coupling processes and interactions between the ionosphere, the lower atmosphere and the Earth’s surface as well as sea level vertical displacements. Together with our project partners from the University of Warmia and Mazury (UWM), the National Observatory of Athens (NOA) and the Universitat Politecnica de Catalunya (UPC) we focus in COSTO to tsunamis that are the result of earthquakes (EQ), volcano eruptions or landslides.</p><p>In the scope of COSTO a roadmap was developed to detect the vertical and horizontal propagation of Travelling Ionospheric Disturbances (TID) in the observations of Low Earth Orbiting (LEO) satellites. Under the assumption that the TIDs triggered by tsunamis behave in approximately the same way for different EQ / tsunami events, this roadmap can be applied also to other events. In this regard, the Tohoku-Oki EQ in 2011 and the Chile EQ in 2015 were studied in detail. The aim of investigating these events is to detect the TIDs in the near vicinity of the propagating tsunami. Thereby, given tsunami propagation models serve as a rough orientation to determine the moments in time and positions for which there is co-location with selected LEO satellites/missions, namely GRACE, GOCE and Swarm. GOCE with an altitude of around 280km and the GRACE satellites with an altitude of around 450km flew over the region where the Tohoku-Oki tsunami was located, about 2.5 hours after the EQ. Using wavelet transform, similar signatures with periods of 10-30 seconds could be detected in the top-side STEC observations of GOCE as well as in the Ka-band observations of GRACE at the time of the overflight. These signatures can be related to the gravity wave originating from the tsunami. Similar signatures were detected in the signals from the GRACE Ka-band observations and in the Swarm Langmuir Probe measurements at an altitude of 450 km for the 2015 Chile tsunami. These roadmap studies provided the first opportunity to observe the vertical and horizontal tsunami induced gravity waves in the ionosphere.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88200528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Fernández-Gómez, A. Goss, M. Schmidt, M. Kosary, Timothy Kodikara, E. Forootan, C. Borries
{"title":"The impact of severe storms on forecasting the Ionosphere-Thermosphere system through the assimilation of SWARM-derived neutral mass density into physics-based models","authors":"I. Fernández-Gómez, A. Goss, M. Schmidt, M. Kosary, Timothy Kodikara, E. Forootan, C. Borries","doi":"10.5194/egusphere-egu21-10552","DOIUrl":"https://doi.org/10.5194/egusphere-egu21-10552","url":null,"abstract":"<p>The response of the Ionosphere - Thermosphere (IT) system to severe storm conditions is of great importance to fully understand its coupling mechanisms. The challenge to represent the governing processes of the upper atmosphere depends, to a large extent, on an accurate representation of the true state of the IT system, that we obtain by assimilating relevant measurements into physics-based models. Thermospheric Mass Density (TMD) is the summation of total neutral mass within the atmosphere that is derived from accelerometer measurements of satellite missions such as CHAMP, GOCE, GRACE(-FO) and Swarm. TMD estimates can be assimilated into physics-based models to modify the state of the processes within the IT system. Previous studies have shown that this modification can potentially improve the simulations and predictions of the ionospheric electron density. These differences could also be interpreted as an indicator of the ionosphere-thermosphere interaction. The research presented here, aims to quantify the impact of data satellite based TMD assimilation on numerical model results.</p><p>Subject of this study is the Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe) physics-based model in combination with the recently developed Thermosphere-Ionosphere Data Assimilation (TIDA) scheme. TMD estimates from the ESA’s Swarm mission are assimilated in CTIPe-TIDA during the 16 to the 20 of March 2015. This period was characterized by a strong geomagnetic storm that triggered significant changes in the IT system, the so-called St. Patrick day storm 2015. To assess the changes in the IT system during storm conditions due to data assimilation, the model results from assimilating SWARM mass density normalized to the altitude of 400 km are compared to independent thermospheric estimates like GRACE-TMDS. In order to evaluate the impact of the data assimilation on the ionosphere, the corresponding output of electron density is compared to high-quality electron density estimates derived from data-driven model of the DGFI-TUM.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91328794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Levasseur-Regourd, E. Hadamcik, J. Lasue, J. Milli, J. Renard
{"title":"In the context of Comet Interceptor: Unexpected polarimetric properties of some dust particles in cometary comae and on small bodies surfaces","authors":"A. Levasseur-Regourd, E. Hadamcik, J. Lasue, J. Milli, J. Renard","doi":"10.5194/EGUSPHERE-EGU21-10426","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-10426","url":null,"abstract":"<p>The ESA-JAXA Comet Interceptor mission is expected to flyby a dynamically new comet (or an interstellar one) and better reveal the properties of its dust particles and nucleus surface. We therefore tentatively compare polarimetric properties of dust released by some comets, as well as present on surfaces of some small bodies.</p><p>Phase curves of the linear polarization of cometary dust particles (observed in equivalent wavelength ranges) show analogous trends. Some unique dynamically new comets or fragmenting comets (e.g. C/1995 O1 Hale-Bopp, C/1999 S4 LINEAR) may nevertheless present a higher positive branch than Halley-type or Jupiter-family comets (e.g. 1P/Halley, 67P/Churyumov-Gerasimenko). Such differences are clues to differences in the properties (sizes, morphologies, complex optical indices) of the dust particles. Dust particles, ejected by nuclei frequently plunging in the inner Solar System, might indeed partly come from quite dense a surface layer, as detected on the small lobe of comet 67P by Rosetta [1].</p><p>Although polarimetric observations of surfaces of cometary nuclei are almost impossible, observations of the rather quiescent nucleus of 1P/Encke have been obtained [2].  Similarities between polarimetric properties of 1P/Encke and atypical small bodies (e.g. Phaeton and particularly Bennu [3]), and of dust in cometary comae may be pointed out. Numerical and laboratory simulations could represent a unique tool to better understand such similarities. It may also be added that dust particles originating from comets, with emphasis on those of Jupiter-family, may survive atmospheric entry, as CP-IDPs collected in the Earth’s stratosphere, and that dust found in debris disks of stellar systems shows levels of polarization similar to those of highly-polarized comets [4].</p><p> </p><p>[1] Kofman et al., MNRAS, 497, 2616-2622, 2020, [2] Boehnhardt et al., A&A, 489, 1337-1343, 2008. [3] Cellino et al., MNRAS, 481, L49-L53, 2018. [4] Levasseur-Regourd et al., PSS, 186, 104896, 2020,</p><p> </p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73701568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Yazdani, S. Takahama, J. Kodros, M. Paglione, M. Masiol, S. Squizzato, K. Florou, S. Pandis, A. Nenes
{"title":"Differentiating between primary and secondary organic aerosols of biomass burning in an environmental chamber with FTIR and AMS","authors":"A. Yazdani, S. Takahama, J. Kodros, M. Paglione, M. Masiol, S. Squizzato, K. Florou, S. Pandis, A. Nenes","doi":"10.5194/EGUSPHERE-EGU21-9057","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-9057","url":null,"abstract":"<p>Fine particulate matter (PM) affects visibility, climate and public health. Organic matter (OM), which is hard to characterize due to its complex chemical composition, can constitute more than half of the PM. Biomass burning from residential wood burning, wildfires, and prescribed burning is a major source of OM with an ever-increasing importance.</p><p>    Aerosol mass spectrometry (AMS) and Fourier transform infrared spectroscopy (FTIR) are two complementary methods of identifying the chemical composition of OM. AMS measures the bulk composition of OM with relatively high temporal resolution but provides limited parent compound information. FTIR, carried out on samples collected on Teflon filters, provides detailed functional groupinformation at the expense of relatively low temporal resolution.</p><p>    In this study, we used these two methods to better understand the evolution of biomass burning OM in the atmosphere with aging. For this purpose, primary emissions from wood and pellet stoves were injected into the Center for Studies of Air Qualities and Climate Change (C-STACC) environmental chamber at ICE-HT/FORTH. Primary emissions were aged using hydroxyl and nitrate radicals (with atmospherically relevant exposures) simulating atmospheric day-time and night-time oxidation.  A time-of-flight (ToF) AMS reported the composition of non-refractory PM<sub>1 </sub>every three minutes and PM<sub>1 </sub>was collected on PTFE filters over 20-minute periods before and after aging for off-line FTIR analysis.</p><p>    We found that AMS and FTIR measurements agreed well in terms of measured OM mass concentration, the OM:OC ratio, and concentration of biomass burning tracers – lignin and levoglucosan. AMS OM concentration was used to estimate chamber wall loss rates which were then used separate the contribution of primary and secondary organic aerosols (POA and SOA) to the aged OM. AMS mass spectra and FTIR spectra of biomass burning SOA and estimates of bulk composition were obtained by this procedure. FTIR and AMS spectra of SOA produced by OH oxidation of biomass burning volatile organic compounds (VOCs) were dominated by acid signatures. Organonitrates, on the other hand, appeared to be important in the SOA aged by the nitrate radical. The spectra from the two instruments also indicated that the signatures of certain compounds such as levoglucosan, lignin and hydrocarbons, which are abundant in biomass burning POA, diminish with aging significantly more than what can be attributed to chamber wall losses. The latter suggests biomass burning POA chemical composition might change noticeably due to heterogeneous reactions or partitioning in the atmosphere. Therefore, the common assumption of stable POA composition is only partially true. In addition, more stable biomass burning tracers should be used to be able to identify highly aged biomass burning aerosols in the atmosphere.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"275 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76382056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Florescu, P. Kuneš, W. Tinner, M. Heurich, W. Finsinger, Alice Moravcová, D. Dreslerová, G. Kletetschka, Daniel Vondrák, V. Carter
{"title":"Holocene spatio-temporal patterns of biomass burning in the Bohemian-Bavarian Forest Mountains (Central Europe)","authors":"G. Florescu, P. Kuneš, W. Tinner, M. Heurich, W. Finsinger, Alice Moravcová, D. Dreslerová, G. Kletetschka, Daniel Vondrák, V. Carter","doi":"10.5194/EGUSPHERE-EGU21-13342","DOIUrl":"https://doi.org/10.5194/EGUSPHERE-EGU21-13342","url":null,"abstract":"<p>Long-term perspectives on disturbance dynamics are important for the conservation of protected areas, yet restoration and conservation strategies in the Bohemian-Bavarian Forest Mountains do not consider the long-term role and patterns of forest fire, which is still deemed a negligible ecosystem disturbance in Central Europe. The scarcity of macroscopic charcoal studies in this area has likely hampered a complete understanding of local fire regime dynamics and its legacies in the present forest structure and composition. Here we used macroscopic charcoal (number, area and morphology of charred particles) and pollen analysis to investigate high resolution spatial and temporal patterns in Holocene fire regimes in the Bavarian-Bohemian Forest. We explored the relationship between changing forest composition dynamics and the influence topography had on spatial patterns of biomass burning. For this, we selected three lacustrine sites (two new, one published), located along a 30 km longitudinal transect within the studied area, at similar elevations in the mixed forest belt, with opposite (north vs. south) aspects. Results showed similar changes in biomass burning, fire frequency and peak magnitude at all sites, with a maximum during the early Holocene when fire resistant taxa (<em>Pinus</em> and <em>Betula</em>) dominated. Fire frequency decreased by half with the expansion of more fire-sensitive taxa (e.g., <em>Picea</em> and <em>Fagus</em>) during the mid-Holocene and reached a second maximum in the late Holocene, parallel with sustained increases in anthropogenic pollen indicators. We found a close north-south correspondence in the succession of fire patterns, i.e., fine-scale changes in biomass burning in the Bavarian Forest site (south-facing catchment) occurred around the same time with those observed at the Bohemian Forest sites (predominantly north-facing catchments), and these changes mirrored the Holocene dynamics of the main forest taxa. For example, the lowest biomass burning and peak magnitude intervals marked the beginning of <em>Picea abies</em> expansion at ~ 9 ka BP, <em>Fagus sylvatica</em> expansion at ~6 ka and <em>Abies alba</em> expansion at ~5 ka BP. Furthermore, we found a direct relationship between the abundance of charred morphotypes of conifer needles and deciduous leaves and the dominance of pine and birch in our pollen records, and a close correspondence between the abundance of non-woody charcoal morphotypes and pollen-derived landscape openness. Non-woody charcoal morphotypes dominated the charcoal records in the Early Holocene at the peak of biomass burning, whereas the abundance of woody morphotypes peaked around 6-8 ka BP and over the last millennium and their proportion in total charcoal influx increased starting 4 ka BP. Our study enables a better understanding of past and present fire regimes in the Bavarian-Bohemian Forest Mountains and highlights the need to consider the effects of fire as part of climate-cha","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83065906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}