Yue Niu, Ze Qin, Ying Zhang, Chao Chen, Shanmu Liu, Hu Chen
{"title":"Expanding the potential of biosensors: a review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors","authors":"Yue Niu, Ze Qin, Ying Zhang, Chao Chen, Shanmu Liu, Hu Chen","doi":"10.1088/2752-5724/ace3dd","DOIUrl":"https://doi.org/10.1088/2752-5724/ace3dd","url":null,"abstract":"Organic electronics have gained significant attention in the field of biosensors owing to their immense potential for economical, lightweight, and adaptable sensing devices. This review explores the potential of organic electronics-based biosensors as a revolutionary technology for biosensing applications. The focus is on two types of organic biosensors: organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. OFET biosensors have found extensive application in glucose, DNA, enzyme, ion, and gas sensing applications, but suffer from limitations related to low sensitivity and selectivity. On the other hand, OECT biosensors have shown superior performance in sensitivity, selectivity, and signal-to-noise ratio, owing to their unique mechanism of operation, which involves the modulation of electrolyte concentration to regulate the conductivity of the active layer. Recent advancements in OECT biosensors have demonstrated their potential for biomedical and environmental sensing, including the detection of neurotransmitters, bacteria, and heavy metals. Overall, the future directions of OFET and OECT biosensors involve overcoming these challenges and developing advanced devices with improved sensitivity, selectivity, reproducibility, and stability. The potential applications span diverse fields including human health, food analysis, and environment monitoring. Continued research and development in organic biosensors hold great promise for significant advancements in sensing technology, opening up new possibilities for biomedical and environmental applications.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127353755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries","authors":"Wanyao Zhang, Yufang Chen, Hongjing Gao, Wei-yang Xie, Peng Gao, Chunman Zheng, Peitao Xiao","doi":"10.1088/2752-5724/ace3de","DOIUrl":"https://doi.org/10.1088/2752-5724/ace3de","url":null,"abstract":"Aqueous zinc-ion batteries, due to their high power density, intrinsic safety, low cost, and environmental benign, have attracted tremendous attentions recently. However, their application is severely plagued by the inferior energy density and short cycling life, which was mainly ascribed to zinc dendrites, and interfacial side reactions, narrow potential window induced by water decomposition, all of which are highly related with the Zn2+ solvation structures in the aqueous electrolytes. Therefore, in this review, we comprehensively summarized the recent development of strategies of regulating Zn2+ solvation structures, specially, the effect of zinc salts, nonaqueous co-solvents, and functional additives on the Zn2+ solvation structures and the corresponding electrochemical performance of aqueous zinc-ion batteries. Moreover, future perspectives focused on the challenges and possible solutions for design and commercialization of aqueous electrolytes with unique solvation structures are provided.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132015544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fang Nie, Jie Wang, Hongdou Fang, Shuanger Ma, Feiyang Wu, Wenbo Zhao, Shizhan Wei, Yuling Wang, Le Zhao, Shishen Yan, Chen Ge, Li Zheng
{"title":"Ultrathin SrTiO3-based oxide memristor with both drift and diffusive dynamics as versatile synaptic emulators for neuromorphic computing","authors":"Fang Nie, Jie Wang, Hongdou Fang, Shuanger Ma, Feiyang Wu, Wenbo Zhao, Shizhan Wei, Yuling Wang, Le Zhao, Shishen Yan, Chen Ge, Li Zheng","doi":"10.1088/2752-5724/ace3dc","DOIUrl":"https://doi.org/10.1088/2752-5724/ace3dc","url":null,"abstract":"Artificial synapses are electronic devices that simulate important functions of biological synapses, and therefore are the basic components of artificial neural morphological networks for brain-like computing. One of the most important objectives for developing artificial synapses is to simulate the characteristics of biological synapses as much as possible, especially their self-adaptive ability to external stimuli. Here, we have successfully developed an artificial synapse with multiple synaptic functions and highly adaptive characteristics based on a simple SrTiO3/Nb: SrTiO3 heterojunction type memristor. Diverse functions of synaptic learning, such as short-term/long-term plasticity (STP/LTP), transition from STP to LTP, learning–forgetting–relearning behaviors, associative learning and dynamic filtering, are all bio-realistically implemented in a single device. The remarkable synaptic performance is attributed to the fascinating inherent dynamics of oxygen vacancy drift and diffusion, which give rise to the coexistence of volatile- and nonvolatile-type resistive switching. This work reports a multi-functional synaptic emulator with advanced computing capability based on a simple heterostructure, showing great application potential for a compact and low-power neuromorphic computing system.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"22 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132610622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxuan Yao, Houyi Cheng, Boyu Zhang, Jialiang Yin, D. Zhu, W. Cai, Sai Li, Weisheng Zhao
{"title":"Tunneling magnetoresistance materials and devices for neuromorphic computing","authors":"Yuxuan Yao, Houyi Cheng, Boyu Zhang, Jialiang Yin, D. Zhu, W. Cai, Sai Li, Weisheng Zhao","doi":"10.1088/2752-5724/ace3af","DOIUrl":"https://doi.org/10.1088/2752-5724/ace3af","url":null,"abstract":"Artificial intelligence has become indispensable in modern life, but its energy consumption has become a significant concern due to its huge storage and computational demands. Artificial intelligence algorithms are mainly based on deep learning algorithms, relying on the backpropagation of convolutional neural networks or binary neural networks. While these algorithms aim to simulate the learning process of the human brain, their low bio-fidelity and the separation of storage and computing units lead to significant energy consumption. The human brain is a remarkable computing machine with extraordinary capabilities for recognizing and processing complex information while consuming very low power. Tunneling magnetoresistance (TMR)-based devices, namely magnetic tunnel junctions (MTJs), have great advantages in simulating the behavior of biological synapses and neurons. This is not only because MTJs can simulate biological behavior such as spike-timing dependence plasticity and leaky integrate-fire, but also because MTJs have intrinsic stochastic and oscillatory properties. These characteristics improve MTJs’ bio-fidelity and reduce their power consumption. MTJs also possess advantages such as ultrafast dynamics and non-volatile properties, making them widely utilized in the field of neuromorphic computing in recent years. We conducted a comprehensive review of the development history and underlying principles of TMR, including a detailed introduction to the material and magnetic properties of MTJs and their temperature dependence. We also explored various writing methods of MTJs and their potential applications. Furthermore, we provided a thorough analysis of the characteristics and potential applications of different types of MTJs for neuromorphic computing. TMR-based devices have demonstrated promising potential for broad application in neuromorphic computing, particularly in the development of spiking neural networks. Their ability to perform on-chip learning with ultra-low power consumption makes them an exciting prospect for future advances in the era of the internet of things.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127473609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huai Zhang, Yajiu Zhang, Z. Hou, M. Qin, Xingsen Gao, Junming Liu
{"title":"Magnetic skyrmions: materials, manipulation, detection, and applications in spintronic devices","authors":"Huai Zhang, Yajiu Zhang, Z. Hou, M. Qin, Xingsen Gao, Junming Liu","doi":"10.1088/2752-5724/ace1df","DOIUrl":"https://doi.org/10.1088/2752-5724/ace1df","url":null,"abstract":"Magnetic skyrmions are vortex-like spin configurations that possess nanometric dimensions, topological stability, and high controllability through various external stimuli. Since their first experimental observation in helimagnet MnSi in 2009, magnetic skyrmions have emerged as a highly promising candidate for carrying information in future high-performance, low-energy-consumption, non-volatile information storage, and logical calculation. In this article, we provide a comprehensive review of the progress made in the field of magnetic skyrmions, specifically in materials, manipulation, detection, and application in spintronic devices. Firstly, we introduce several representative skyrmion material systems, including chiral magnets, magnetic thin films, centrosymmetric materials, and Van der Waals materials. We then discuss various methods for manipulating magnetic skyrmions, such as electric current and electric field, as well as detecting them, mainly through electrical means such as the magnetoresistance effect. Furthermore, we explore device applications based on magnetic skyrmions, such as track memory, logic computing, and neuromorphic devices. Finally, we summarize the challenges faced in skyrmion research and provide future perspectives.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"133 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114522053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging diagnostic and therapeutic technologies based on ultrasound-triggered biomaterials","authors":"Danqing Huang, Jinglin Wang, Baojie Wen, Yuanjin Zhao","doi":"10.1088/2752-5724/acdf05","DOIUrl":"https://doi.org/10.1088/2752-5724/acdf05","url":null,"abstract":"Ultrasound (US) is a kind of acoustic wave with frequency higher than 20 kHz. Learning from the echo detection ability of bats and dolphins, scientists applied US for clinical imaging by sending out US waves and detecting echoes with shifted intensities and frequencies from human tissue. US has long played a critical role in noninvasive, real-time, low-cost and portable diagnostic imaging. With the in-depth study of US in multidisciplinary fields, US and US-responsive materials have shown practical value in not only disease diagnosis, but also disease treatment. In this review, we introduce the recently proposed and representative US-responsive materials for biomedical applications, including diagnostic and therapeutic applications. We focused on US-mediated physicochemical therapies, such as sonodynamic therapy, high-intensity focused US ablation, sonothermal therapy, thrombolysis, etc, and US-controlled delivery of chemotherapeutics, gases, genes, proteins and bacteria. We conclude with the current challenges facing the clinical translation of smart US-responsive materials and prospects for the future development of US medicine.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126557866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahao Zhang, Chao Ye, Yao Liao, Caihong Sun, Y. Zeng, Jing Xiao, Zhi Chen, Wei Liu, Xiukang Yang, P. Gao
{"title":"Thiophene-functionalized porphyrin complexes as high performance electrodes for sodium ion batteries","authors":"Jiahao Zhang, Chao Ye, Yao Liao, Caihong Sun, Y. Zeng, Jing Xiao, Zhi Chen, Wei Liu, Xiukang Yang, P. Gao","doi":"10.1088/2752-5724/acdd86","DOIUrl":"https://doi.org/10.1088/2752-5724/acdd86","url":null,"abstract":"Organic sodium-ion batteries (OSIBs) using eco-friendly organic materials as electrodes have recently received much attention. However, the practical applications of OSIBs are generally limited by the inherent disadvantages of organic electrodes, such as their low conductivity, poor stability, and high solubility in electrolytes. Herein, we presented [5, 10, 15, 20-tetrathienylporphinato] M (II) (MTTP, M=2H, Ni) as new electrode materials in sodium-organic batteries. The incorporation of thiophene functionalized groups and nickel (Ⅱ) ion in the molecular design of porphyrins enabled stable and excellent electrochemical performance in sodium storage systems. Benefiting from multiple charge storage sites and bipolar characteristics, the NiTTP anode has a reversible capacity of 434 mAh g−1 at a current density of 25 mA g−1. An excellent long-term cycling stability and high average voltage were obtained when NiTTP was used as a cathode. In a symmetrical battery, where NiTTP was used as both cathode and anode materials, a high average voltage of 2.3 V and a practical energy density of 93 Wh kg−1 was achieved. These results suggest that the thiophene-based porphyrin derivatives would be promising electrode materials for long-term organic sodium ion batteries for green and stable energy storage.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115472107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors","authors":"Chengzhai Lv, Fanqing Zhang, Chunyang Li, Zhongyi Li, Jing Zhao","doi":"10.1088/2752-5724/acda4d","DOIUrl":"https://doi.org/10.1088/2752-5724/acda4d","url":null,"abstract":"Neuromorphic systems represent a promising avenue for the development of the next generation of artificial intelligence hardware. Machine vision, one of the cores in artificial intelligence, requires system-level support with low power consumption, low latency, and parallel computing. Neuromorphic vision sensors provide an efficient solution for machine vision by simulating the structure and function of the biological retina. Optoelectronic synapses, which use light as the main means to achieve the dual functions of photosensitivity and synapse, are the basic units of the neuromorphic vision sensor. Therefore, it is necessary to develop various optoelectronic synaptic devices to expand the application scenarios of neuromorphic vision systems. This review compares the structure and function for both biological and artificial retina systems, and introduces various optoelectronic synaptic devices based on low-dimensional materials and working mechanisms. In addition, advanced applications of optoelectronic synapses as neuromorphic vision sensors are comprehensively summarized. Finally, the challenges and prospects in this field are briefly discussed.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115193874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Rasool, Jiwoo Yeop, H. Cho, Woojin Lee, Jae Won Kim, Dohun Yuk, Jin Young Kim
{"title":"Path to the fabrication of efficient, stable and commercially viable large-area organic solar cells","authors":"S. Rasool, Jiwoo Yeop, H. Cho, Woojin Lee, Jae Won Kim, Dohun Yuk, Jin Young Kim","doi":"10.1088/2752-5724/acd6ab","DOIUrl":"https://doi.org/10.1088/2752-5724/acd6ab","url":null,"abstract":"Organic solar cells (OSCs) have reached an outstanding certified power conversion efficiency (PCE) of over 19% in single junction and 20% in tandem architecture design. Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors (NFAs), together with PM6 electron donor polymers. PCEs are on the rise for small-area OSCs. However, large-area OSC sub-modules are still unable to achieve such high PCEs, and the highest certified PCE reported so far is ∼12% having an area of 58 cm2. To fabricate efficient large-area OSCs, new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms. Moreover, the search for stable yet efficient OSCs is still in progress. In this review, progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers. Finally, the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly, an outlook for the OSCs is given.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128810641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The stability of inorganic perovskite solar cells: from materials to devices","authors":"Bingcheng Yu, Shannon J. Tan, Dongmei Li, Q. Meng","doi":"10.1088/2752-5724/acd56c","DOIUrl":"https://doi.org/10.1088/2752-5724/acd56c","url":null,"abstract":"Inorganic halide perovskite solar cells (IHPSCs) have become one of the most promising research hotspots due to to the excellent light and thermal stabilities of inorganic halide perovskites (IHPs). Despite rapid progress in cell performance in very recent years, the phase instability of IHPs easily occurs, which will remarkably influence the cell efficiency and stability. Much effort has been devoted to solving this issue. In this review, we focus on representative progress in the stability from IHPs to IHPSCs, including (i) a brief introduction of inorganic perovskite materials and devices, (ii) some new additives and fabrication methods, (iii) thermal and light stabilities, (iv) tailoring phase stability, (v) optimization of the stability of inorganic perovskite solar cells and (vi) interfacial engineering for stability enhancement. Finally, perspectives will be given regarding future work on highly efficient and stable IHPSCs. This review aims to provide a thorough understanding of the key influential factors on the stability of materials to highly efficient and stable IHPSCs.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132540136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}