Xuankun Li, John M. Hash, Emily Hartop, Ding Yang, Paul T. Smith, Brian V. Brown
{"title":"A molecular phylogeny of scuttle flies (Diptera: Phoridae) unveils extensive concordance but intriguing divergences from morphological results","authors":"Xuankun Li, John M. Hash, Emily Hartop, Ding Yang, Paul T. Smith, Brian V. Brown","doi":"10.1111/syen.12644","DOIUrl":"10.1111/syen.12644","url":null,"abstract":"<p>We present the most comprehensive molecular phylogeny of scuttle flies (Diptera: Phoridae) to date based on seven genetic loci—four protein-coding genes: arginine kinase (AK), carbamoylphosphate synthase 2 domain of CAD (rudimentary; CAD2), cytochrome oxidase I (CO1), NADH1 dehydrogenase (ND1) and three ribosomal DNAs: 12S, 18S and 28S. Our analyses include 122 species including nine outgroup taxa and 113 phorids (representing 61 genera). Phylogenetic relationships based on the approximately 5.3 kb of sequence data were inferred by maximum likelihood and Bayesian methods. Results are broadly congruent with recent morphological phylogenies of the group, with some significant exceptions. Our data support the monophyletic Sciadocerinae as sister to the remainder of the family. However, we found <i>Ctenopleuriphora</i> Liu to be sister to Phorinae with low support, and subfamilies Chonocephalinae and Termitoxeniinae are placed deep within Phorinae, and their monophyly is not consistently recovered. Our dating analyses indicate a lower Cretaceous origin of Phoridae at 120.8 Ma (125.4–111.2 Ma).</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"50 1","pages":"68-81"},"PeriodicalIF":4.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon van Noort, Mircea-Dan Mitroiu, Roger Burks, Gary Gibson, Paul Hanson, John Heraty, Petr Janšta, Astrid Cruaud, Jean-Yves Rasplus
{"title":"Redefining Ormyridae (Hymenoptera, Chalcidoidea) with establishment of subfamilies and description of new genera","authors":"Simon van Noort, Mircea-Dan Mitroiu, Roger Burks, Gary Gibson, Paul Hanson, John Heraty, Petr Janšta, Astrid Cruaud, Jean-Yves Rasplus","doi":"10.1111/syen.12630","DOIUrl":"10.1111/syen.12630","url":null,"abstract":"<p>The circumscription of the family Ormyridae (Hymenoptera: Chalcidoidea) is revised after phylogenetic analysis based on ultra-conserved elements (UCEs) and comparative morphological assessment of the chalcid ‘Gall Clade’. Six genera are treated in the family, including two new genera, <i>Halleriaphagus</i> van Noort and Burks, <b>gen. nov</b>., and <i>Ouma</i> Mitroiu, <b>gen. nov.</b> One genus, <i>Eubeckerella</i> Narendran, is re-assigned to the family, and <i>Ormyrulus</i> Bouček is synonymised with <i>Ormyrus</i> Westwood, <b>syn. nov</b>., resulting in the new combination <i>Ormyrus gibbus</i> (Bouček), <b>comb. nov.</b> The six genera are classified in three subfamilies, two of which are newly described, Asparagobiinae van Noort, Burks, Mitroiu and Rasplus, <b>subfam. nov.,</b> and Hemadinae van Noort, Burks, Mitroiu and Rasplus, <b>subfam. nov.</b> <i>Halleriaphagus</i> is established for the newly described type species <i>Halleriaphagus phagolucida</i> van Noort and Burks, <b>sp. nov</b>., and <i>Ouma</i> is erected for <i>O. daleskeyae</i> Mitroiu, <b>sp. nov.</b>, and <i>O. emazantsi</i> Mitroiu, <b>sp. nov.</b> <i>Asparagobius</i> is revised with description of <i>Asparagobius bouceki</i> van Noort, <b>sp. nov.</b>, and <i>Asparagobius copelandi</i> Rasplus and van Noort, <b>sp. nov.</b> <i>Asparagobius</i> and <i>Halleriaphagus</i> are classified in Asparagobiinae, <i>Hemadas</i> in Hemadinae and <i>Eubeckerella</i>, <i>Ormyrus</i> and <i>Ouma</i> in Ormyrinae. The molecular support defining the ormyrid clade is corroborated by the proposed morphological synapomorphy of a foliaceous prepectus overlying the tegula base. Identification keys to the genera of Ormyridae and to the species of <i>Asparagobius</i> and <i>Ouma</i> are provided. Online Lucid identification keys and images of all the species treated herein are available at: http://www.waspweb.org.</p><p>Zoobank Registration: LSID urn:lsid:zoobank.org:pub:8811695B-EE57-4C18-A6B6-E63D267E2373.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 3","pages":"447-494"},"PeriodicalIF":4.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12630","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirela Mirić, Konstantin A. Efetov, Gerhard M. Tarmann, Andrea Chiocchio, Maria Heikkilä, David L. Wagner, Jadranka Rota
{"title":"First comprehensive higher level phylogeny of Zygaenidae (Lepidoptera) including estimated ages of the major lineages and a review of known zygaenid fossils","authors":"Mirela Mirić, Konstantin A. Efetov, Gerhard M. Tarmann, Andrea Chiocchio, Maria Heikkilä, David L. Wagner, Jadranka Rota","doi":"10.1111/syen.12634","DOIUrl":"10.1111/syen.12634","url":null,"abstract":"<p>Zygaenidae, also known as burnet, forester, smoky, or leaf skeletonizer moths, are a family of mainly diurnal moths well known for their aposematic colouration and the ability to release hydrogen cyanide as a defence mechanism. So far, few attempts have been made to understand the evolutionary history of the global zygaenid fauna. Here, we inferred the most comprehensive molecular phylogeny for Zygaenidae to date and estimated the lineage timing-of-divergence with a Bayesian approach. Building on earlier work, we significantly increased the taxon and gene sampling for the family, which here included data from 30 gene fragments, recovered from public databases or newly sequenced, for almost 30% of the species representing 92 genera (49%) and all five subfamilies. We recovered strong support for the monophyly of Zygaenidae, Chalcosiinae, and Zygaeninae. Procridinae were recovered as monophyletic with low support, whereas the monophyly of Callizygaeninae remains untested as we sampled only one of the two genera. In the core dataset, we recovered Procridinae as sister to Callizygaeninae + Chalcosiinae. This large clade is the sister lineage to Zygaeninae. The position of Inouelinae could not be resolved. The lineage leading to the extant Zygaenidae appears to have diverged in Late Cretaceous (ca. 86 Ma), while the divergence among the subfamilies occurred several million years before the Cretaceous–Paleogene mass extinction event (ca. 66 Ma). Additionally, we provide a review of known fossil Zygaenidae as Appendix S1. Our results form a strong basis for future studies of zygaenid biosystematics, including their ecology, evolution, and behaviour.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"610-623"},"PeriodicalIF":4.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12634","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erki Õunap, Vineesh Nedumpally, Etka Yapar, Alan R. Lemmon, Toomas Tammaru
{"title":"Molecular phylogeny of north European Geometridae (Lepidoptera: Geometroidea)","authors":"Erki Õunap, Vineesh Nedumpally, Etka Yapar, Alan R. Lemmon, Toomas Tammaru","doi":"10.1111/syen.12638","DOIUrl":"10.1111/syen.12638","url":null,"abstract":"<p>A comprehensive phylogeny of north European Geometridae is reconstructed using a two-step analytical pipeline. First, a phylogenomic backbone tree was inferred using a 117-species subset of geometrid moths and a 35-species set of outgroup taxa from eight other macroheteroceran families. The data matrix totalled 209,499 bp from 648 protein-coding loci obtained using anchored hybrid enrichment technique for sequencing. This backbone was used for constructing a larger phylogeny of Geometridae based on up to 11 ‘traditional’ protein-coding genes which were obtained for all 376 species of north European geometrids, complemented by 98 species from taxonomic key groups of Geometridae from other parts of the world. Our results largely corroborate earlier findings about higher classification of Geometridae, but new evidence nevertheless allows us to suggest several changes to the taxonomy. Lampropterygini Õunap & Nedumpally <b>tribus nova</b> and Pelurgini Õunap & Nedumpally <b>tribus nova</b> (both Larentiinae) are described. Epirranthini are regarded as a junior subjective synonym of Rumiini <b>syn. n.</b> Triphosini and Macariini are shown to be paraphyletic within their current limits. <i>Costaconvexa</i> Agenjo is transferred from Xanthorhoini to Epirrhoini <b>new tribe association</b>, <i>Artiora</i> Meyrick from Ennomini incertae sedis to Boarmiini <b>new tribe association</b>, <i>Selenia</i> Hübner from Ennominae incertae sedis to Epionini <b>new tribe association</b> and <i>Epirranthis</i> Hübner from Epirranthini to Rumiini <b>new tribe association</b>. <i>Ochyria</i> Hübner <b>stat. rev.</b> is revived from synonym of <i>Xanthorhoe</i> Hübner as a valid genus and <i>Epelis</i> Hulst <b>stat. rev.</b> and <i>Speranza</i> Curtis <b>stat. rev.</b> from synonyms of <i>Macaria</i> Curtis as valid genera, leading to the following new or revised combinations: <i>Ochyria quadrifasiata</i> (Clerck) <b>rev. comb.</b>, <i>Epelis carbonaria</i> (Clerck) <b>comb. n.</b>, <i>Speranza fusca</i> (Thunberg) <b>comb. n.</b>, <i>Speranza artesiaria</i> (Denis & Schiffermüller) <b>rev. comb.</b>, <i>Speranza brunneata</i> (Thunberg) <b>rev. comb.</b>, <i>Speranza wauaria</i> (Linnaeus) <b>rev. comb.</b>, <i>Speranza loricaria</i> (Eversmann) <b>rev. comb.</b> <i>Perizoma saxicola</i> Tikhonov <b>rev. comb.</b> is transferred back to its original genus from <i>Gagitodes</i> Warren. <i>Hydrelia</i> Hübner, <i>Xanthorhoe</i> and <i>Heliomata</i> Grote & Robinson are shown to be paraphyletic within their current limits.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"50 1","pages":"32-67"},"PeriodicalIF":4.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanja Vojvoda Zeljko, Martina Pavlek, Emma Wahlberg, Bradley J. Sinclair, Marija Ivković
{"title":"Molecular phylogeny and biogeography of the aquatic dance fly subfamily Clinocerinae (Diptera: Empididae)","authors":"Tanja Vojvoda Zeljko, Martina Pavlek, Emma Wahlberg, Bradley J. Sinclair, Marija Ivković","doi":"10.1111/syen.12637","DOIUrl":"10.1111/syen.12637","url":null,"abstract":"<p>This study presents the first molecular phylogenetic analysis of the Clinocerinae, challenging the traditionally accepted monophyly of this subfamily. DNA was extracted from fresh and museum specimens representing all biogeographical regions. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic analyses were performed based on sequences from two mitochondrial genes, cytochrome c oxidase subunit I (COI) and cytochrome <i>β</i>, and three nuclear genes, carbomoylphosphate synthase domain of rudimentary, elongation factor-1α and isocitrate dehydrogenase. Through molecular data and morphological examination, our results reveal a division within Clinocerinae, distinguishing ‘typical’ or Clinocerinae (s.s.) from several genera, specifically <i>Afroclinocera</i> Sinclair, <i>Asymphyloptera</i> Collin and <i>Proagomyia</i> Collin, possibly lending support for a reclassification of these genera outside Clinocerinae. <i>Bergenstammia</i> Mik is proposed as a junior synonym of <i>Phaeobalia</i> Mik, <b>syn. n.</b>, and the following new combinations are recognized: <i>Phaeobalia albanica</i> (Wagner) <b>comb. n.</b>, <i>Phaeobalia aurinae</i> (Pusch & Wagner) <b>comb. n.</b>, <i>Phaeobalia carniolica</i> (Horvat) <b>comb. n.</b>, <i>Phaeobalia frigida</i> (Vaillant) <b>comb. n.</b>, <i>Phaeobalia glacialis</i> (Palaczyk & Słowińska) <b>comb. n.</b>, <i>Phaeobalia multiseta</i> (Strobl) <b>comb. n.</b>, <i>Phaeobalia nudimana</i> (Vaillant) <b>comb. n.</b>, <i>Phaeobalia nudipes</i> (Loew) <b>comb. n.</b>, <i>Phaeobalia pulla</i> (Vaillant & Wagner) <b>comb. n.</b>, <i>Phaeobalia pyrenaica</i> (Vaillant & Vinçon) <b>comb. n.</b>, <i>Phaeobalia slovaca</i> (Wagner) <b>comb. n.</b> and <i>Phaeobalia thomasi</i> (Vaillant & Vinçon) <b>comb. n.</b> Re-evaluation of the genus <i>Roederiodes</i> resulted in the following new combinations: <i>Clinocerella macedonicus</i> (Wagner & Horvat) <b>comb. n.</b> and <i>Clinocerella montenegrinus</i> (Wagner & Horvat) <b>comb. n.</b> The origins of Clinocerinae (s.s.) are traced back to the Holarctic region, Laurasian origin, with a likely complex history of dispersal events into the Southern Hemisphere. Based on current knowledge, the greatest generic and species richness is confined to the Palaearctic Region. These findings provide valuable insights into the evolutionary relationships and distribution patterns of Clinocerinae (s.s.), challenging existing taxonomic classifications and shedding light on their historical biogeography.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"635-648"},"PeriodicalIF":4.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas J. Vereecken, Kit S. Prendergast, Silas Bossert, Keng-Lou James Hung, Stuart P. M. Roberts, Cristian Villagra, Natapot Warrit, Joseph S. Wilson, Thomas J. Wood, Michael C. Orr
{"title":"Five good reasons not to dismiss scientific binomial nomenclature in conservation, environmental education and citizen science: A case study with bees","authors":"Nicolas J. Vereecken, Kit S. Prendergast, Silas Bossert, Keng-Lou James Hung, Stuart P. M. Roberts, Cristian Villagra, Natapot Warrit, Joseph S. Wilson, Thomas J. Wood, Michael C. Orr","doi":"10.1111/syen.12636","DOIUrl":"10.1111/syen.12636","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"527-535"},"PeriodicalIF":4.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12636","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harald Letsch, Sonja Vukotić, Brigitte Gottsberger, Ariel Leib Leonid Friedman, Marek Wanat, Franziska Beran, Konrad Fiedler, Alexander Riedel
{"title":"The phylogeny of ceutorhynchine weevils (Ceutorhynchinae, Curculionidae): Mitogenome data improve the resolution of tribal relationships","authors":"Harald Letsch, Sonja Vukotić, Brigitte Gottsberger, Ariel Leib Leonid Friedman, Marek Wanat, Franziska Beran, Konrad Fiedler, Alexander Riedel","doi":"10.1111/syen.12635","DOIUrl":"10.1111/syen.12635","url":null,"abstract":"<p>Ceutorhynchinae Gistel are a diverse weevil subfamily of almost worldwide distribution and considerable economic importance. Nevertheless, the classification of Ceutorhynchinae and their phylogenetic relationships are not yet fully resolved. Here, we sequenced the mitogenomes of 54 ceutorhynchine species. Phylogenetic analyses by maximum likelihood and Bayesian inference were performed on a dataset of 13 protein-coding and two ribosomal genes. All analyses recovered three well supported clades A–C. A principal component analysis shows that codon usage differs considerably between these clades, indicating a compositional asymmetry in ceutorhynchine mitogenomes. This increased the challenge of resolving the early relationships among the three clades. The resolution of the later diversification was more robust, and the resulting topologies were largely compatible with each other and with the current taxonomic classification. Exceptions are the genera <i>Micrelus</i> Thomson, which is transferred from the tribe Ceutorhynchini to Egriini Pajni and Kohli (new position) and <i>Amalus</i> Schoenherr, which is transferred to Phytobiini Gistel (new position). Amalini Wagner 1936 is a junior synonym of Phytobiini Gistel 1848 (syn. n.). Coeliodini Lacordaire (new status), a tribe previously regarded as junior synonym of Ceutorhynchini, is re-established. Our analyses also clarified the difficult assignments of taxa to the tribes Scleropterini Schultze and Phytobiini. All taxa with the ability to jump as adult beetles belong to clade B, which comprises the tribes Cnemogonini Colonnelli, Hypurini Schultze, Mecysmoderini Wagner and Phytobiini. With dense taxon sampling and appropriate analytical methods, mitogenome data provide a phylogeny well suited to improve the traditional classification of this neglected and species-rich taxon.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"624-634"},"PeriodicalIF":4.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyung Min Lee, Leidys Murillo-Ramos, Peter Huemer, Axel Hausmann, Hermann S. Staude, Toni Mayr, Pasi Sihvonen
{"title":"Complex evolution in thin air: Investigating female flightlessness and diel behaviour in geometrid moths (Lepidoptera)","authors":"Kyung Min Lee, Leidys Murillo-Ramos, Peter Huemer, Axel Hausmann, Hermann S. Staude, Toni Mayr, Pasi Sihvonen","doi":"10.1111/syen.12633","DOIUrl":"10.1111/syen.12633","url":null,"abstract":"<p>Many unique high-altitude mountain ecosystems have been declining due to climate change, posing a threat to flora and fauna that have adapted to these ecosystems. This study explores the evolution of high-altitude adaptations, focusing on female flightlessness and diel activity, in geometrid moths (Lepidoptera: Ennominae, Gnophini) within the European Alps. We constructed a phylogeny of Gnophini moths using a dataset of 157 taxa, with up to seven genetic markers and traced the evolutionary history of diel activity and wing length reduction in females. Analysis of divergence times suggested that female flightlessness has evolved at least three times independently between the early and late Miocene. The evolution of wing length reduction is likely correlated with elevation, indicating adaptations to cold and windy conditions in high altitude. The evolutionary events leading to shifts in adult diel activity, from ancestral nocturnality to diurnality, have occurred independently at least three times and may also be a consequence of adaptations at high elevations. Strikingly, among diurnal <i>Sciadia</i>, two species have evolved further to become nocturnal like their ancestors. Our findings highlight how phylogenies can provide new insights into evolutionary patterns in moths. We provided a robust basis for resolving taxonomic ambiguities in Alpine Gnophini, leading us to propose 10 changes to the current classification: <i>Scrupodes</i> Lee & Sihvonen <b>gen. n.</b>, <i>Elophos</i> Boisduval (type species <i>Geometra operaria</i> Hübner) is considered a junior synonym of <i>Sciadia</i> Hübner <b>syn. n.</b>, <i>Yezognophos dilucidaria</i> (Denis & Schiffermüller) and <i>Y. sproengertsi</i> (Püngeler) are transferred to <i>Parietaria</i> Leraut <b>comb. n.</b>, <i>Yezognophos serotinaria</i> (Denis & Schiffermüller) is transferred to <i>Scrupeus</i> Lee & Sihvonen <b>comb. n.</b>, <i>Elophos caelibaria</i> (Heydenreich), <i>E. zirbitzensis</i> (Pieszcek), <i>E. operaria</i> (Hübner) and <i>E. andereggaria</i> (De La Harpe) are transferred to <i>Sciadia</i> Hübner <b>comb. n.</b> and <i>Dichrognophos</i> Wehrli (type species <i>Gnophos orthogonia</i> Wehrli) is transferred from Ennominae: Cassymini to Ennominae: Gnophini.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"596-609"},"PeriodicalIF":4.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikael Englund, Kyung Min Lee, Hermann Staude, Anne Duplouy, Axel Hausmann, Elina Laiho, Max Söderholm, Pasi Sihvonen
{"title":"130 years from discovery to description: micro-CT scanning applied to construct the integrative taxonomy of a forgotten moth from Southern Africa (Lepidoptera: Geometridae)","authors":"Mikael Englund, Kyung Min Lee, Hermann Staude, Anne Duplouy, Axel Hausmann, Elina Laiho, Max Söderholm, Pasi Sihvonen","doi":"10.1111/syen.12627","DOIUrl":"10.1111/syen.12627","url":null,"abstract":"<p>X-ray micro-computed tomography (micro-CT) of dried and pinned museum specimens combined with advanced image processing can provide a useful, novel and non-destructive tool for integrative insect taxonomy. This paper demonstrates how micro-CT can be applied to provide unambiguous illustrations of diagnostic morphological characters for new taxa description and to understand how micro-CT imaging may complement other imaging techniques. Following micro-CT scanning, a semi-automatic segmentation and volume rendering protocol was used to portray the wing venation and diagnostic structures and ornamentation of male genitalia from multiple angles. Using micro-CT images, we provide the description of a conspicuous geometrid moth from southern Africa (Lepidoptera: Geometridae), which has been present in collections since 1894, but left without an available name. Using a multigenetic dataset comprising 273 terminal taxa from the superfamily Geometroidea, we constructed a molecular phylogeny to place our study species to an isolated lineage in Geometridae: Larentiinae, tribe Xanthorhoini sensu lato. We describe it as <i>Chloecolora vergetaria</i> new genus, new species Englund & Staude, and provide diverse ecological information on its distribution, habitat, host plant, adult and immature stages, and parasites. We found micro-CT imaging particularly useful in two- and three-dimensional imaging of wings, providing detailed information for instance on non-tubular folds that may be difficult to distinguish using other techniques.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 3","pages":"507-525"},"PeriodicalIF":4.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Platania, Anabela Cardoso, Mark Anderson, Martin Fikáček, Jérémy Gauthier, Lars Hendrich, Christian Mille, Yuta Morii, Chris A. M. Reid, Matthias Seidel, Mary Morgan-Richards, Steven A. Trewick, Emmanuel F. A. Toussaint, Jesús Gómez-Zurita
{"title":"New Caledonian rovers and the historical biogeography of a hyper-diverse endemic lineage of South Pacific leaf beetles","authors":"Leonardo Platania, Anabela Cardoso, Mark Anderson, Martin Fikáček, Jérémy Gauthier, Lars Hendrich, Christian Mille, Yuta Morii, Chris A. M. Reid, Matthias Seidel, Mary Morgan-Richards, Steven A. Trewick, Emmanuel F. A. Toussaint, Jesús Gómez-Zurita","doi":"10.1111/syen.12632","DOIUrl":"10.1111/syen.12632","url":null,"abstract":"<p>South Pacific archipelagos are central in the biogeographic debate on the relative importance of vicariance and dispersal in shaping the distribution of species. However, each taxonomic group was subject to different processes and histories, and here, we reveal the historical biogeography of the diverse Eumolpinae leaf beetles, widely distributed in the region. Extensive taxon sampling focusing on South Pacific Eumolpinae was used to infer the first molecular phylogeny of the group using three single-copy protein-coding nuclear and two mitochondrial markers. Upon assessing the clade of interest for lineage-specific variation in substitution rates, the age of the most recent common ancestors was estimated using out-group calibration and multi-gamma site models (MGSMs). Biogeographic analyses used standard event-based inferences also incorporating phylogenetic uncertainty. Zealandian Eumolpinae are monophyletic and appear to have split from their global relatives in the transition from the Cretaceous to the Paleogene. Variation in the rates of molecular evolution affected the in-group stem branch, with a significant drop in the substitution rate, and the MGSM correction recovered the crown age of Zealandian Eumolpinae during the Late Eocene–Oligocene transition. Biogeographic inference resolved the origin of the radiation in New Caledonia, favouring a null model without island age constraints, and repeated dispersal events to the other islands, including three independent but synchronous colonisations of New Zealand during the Miocene. New Caledonia, with a highly diverse Eumolpinae fauna of uncertain origin, acted as a hub and pump of biodiversity of these beetles in the entire South Pacific region, sending migrants to other islands through long-distance dispersal with lineages establishing when land became available.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"49 4","pages":"565-582"},"PeriodicalIF":4.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}