Systematic Biology最新文献

筛选
英文 中文
Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles 复杂的多倍体:起源、基因组组成和外来等位基因的作用
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2024-04-13 DOI: 10.1093/sysbio/syae012
J Luis Leal, Pascal Milesi, Eva Hodková, Qiujie Zhou, Jennifer James, D Magnus Eklund, Tanja Pyhäjärvi, Jarkko Salojärvi, Martin Lascoux
{"title":"Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles","authors":"J Luis Leal, Pascal Milesi, Eva Hodková, Qiujie Zhou, Jennifer James, D Magnus Eklund, Tanja Pyhäjärvi, Jarkko Salojärvi, Martin Lascoux","doi":"10.1093/sysbio/syae012","DOIUrl":"https://doi.org/10.1093/sysbio/syae012","url":null,"abstract":"Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid’s ancestral species, profoundly reshaping the polyploid’s genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000–188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species’ range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"29 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Museum genomics reveals the hybrid origin of an extinct crater lake endemic 博物馆基因组学揭示了一种已灭绝的火山口湖特有物种的杂交起源
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2024-04-10 DOI: 10.1093/sysbio/syae017
Amy R Tims, Peter J Unmack, Michael P Hammer, Culum Brown, Mark Adams, Matthew D McGee
{"title":"Museum genomics reveals the hybrid origin of an extinct crater lake endemic","authors":"Amy R Tims, Peter J Unmack, Michael P Hammer, Culum Brown, Mark Adams, Matthew D McGee","doi":"10.1093/sysbio/syae017","DOIUrl":"https://doi.org/10.1093/sysbio/syae017","url":null,"abstract":"Crater lake fishes are common evolutionary model systems, with recent studies suggesting a key role for gene flow in promoting rapid adaptation and speciation. However, the study of these young lakes can be complicated by human-mediated extinctions. Museum genomics approaches integrating genetic data from recently extinct species are therefore critical to understanding the complex evolutionary histories of these fragile systems. Here, we examine the evolutionary history of an extinct Southern Hemisphere crater lake endemic, the rainbowfish Melanotaenia eachamensis. We undertook comprehensive sampling of extant rainbowfish populations of the Atherton Tablelands of Australia alongside historical museum material to understand the evolutionary origins of the extinct crater lake population and the dynamics of gene flow across the ecoregion. The extinct crater lake species is genetically distinct from all other nearby populations due to historic introgression between two proximate riverine lineages, similar to other prominent crater lake speciation systems, but this historic gene flow has not been sufficient to induce a species flock. Our results suggest that museum genomics approaches can be successfully combined with extant sampling to unravel complex speciation dynamics involving recently extinct species.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"3 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Museum skins enable identification of introgression associated with cytonuclear discordance 通过博物馆的皮肤可以识别与细胞核不一致有关的引种
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2024-04-05 DOI: 10.1093/sysbio/syae016
Sally Potter, Craig Moritz, Maxine P Piggott, Jason G Bragg, Ana C Afonso Silva, Ke Bi, Christiana McDonald-Spicer, Rustamzhon Turakulov, Mark D B Eldridge
{"title":"Museum skins enable identification of introgression associated with cytonuclear discordance","authors":"Sally Potter, Craig Moritz, Maxine P Piggott, Jason G Bragg, Ana C Afonso Silva, Ke Bi, Christiana McDonald-Spicer, Rustamzhon Turakulov, Mark D B Eldridge","doi":"10.1093/sysbio/syae016","DOIUrl":"https://doi.org/10.1093/sysbio/syae016","url":null,"abstract":"Increased sampling of genomes and populations across closely related species has revealed that levels of genetic exchange during and after speciation are higher than previously thought. One obvious manifestation of such exchange is strong cytonuclear discordance, where the divergence in mitochondrial DNA (mtDNA) differs from that for nuclear genes more (or less) than expected from differences between mtDNA and nuclear DNA (nDNA) in population size and mutation rate. Given genome-scale datasets and coalescent modelling, we can now confidently identify cases of strong discordance and test specifically for historical or recent introgression as the cause. Using population sampling, combining exon capture data from historical museum specimens and recently collected tissues we showcase how genomic tools can resolve complex evolutionary histories in the brachyotis group of rock-wallabies (Petrogale). In particular, applying population and phylogenomic approaches we can assess the role of demographic processes in driving complex evolutionary patterns and assess a role of ancient introgression and hybridisation. We find that described species are well supported as monophyletic taxa for nDNA genes, but not for mtDNA, with cytonuclear discordance involving at least four operational taxonomic units (OTUs) across four species which diverged 183-278 kya. ABC modelling of nDNA gene trees supports introgression during or after speciation for some taxon pairs with cytonuclear discordance. Given substantial differences in body size between the species involved, this evidence for gene flow is surprising. Heterogenous patterns of introgression were identified but do not appear to be associated with chromosome differences between species. These and previous results suggest that dynamic past climates across the monsoonal tropics could have promoted reticulation among related species.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"28 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Flow and Isolation in the Arid Nearctic Revealed by Genomic Analyses of Desert Spiny Lizards 沙漠棘蜥的基因组分析揭示了干旱近北极地区的基因流动和隔离现象
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2024-01-05 DOI: 10.1093/sysbio/syae001
Carlos J Pavón-Vázquez, Qaantah Rana, Keaka Farleigh, Erika Crispo, Mimi Zeng, Jeevanie Liliah, Daniel Mulcahy, Alfredo Ascanio, Tereza Jezkova, Adam D Leaché, Tomas Flouri, Ziheng Yang, Christopher Blair
{"title":"Gene Flow and Isolation in the Arid Nearctic Revealed by Genomic Analyses of Desert Spiny Lizards","authors":"Carlos J Pavón-Vázquez, Qaantah Rana, Keaka Farleigh, Erika Crispo, Mimi Zeng, Jeevanie Liliah, Daniel Mulcahy, Alfredo Ascanio, Tereza Jezkova, Adam D Leaché, Tomas Flouri, Ziheng Yang, Christopher Blair","doi":"10.1093/sysbio/syae001","DOIUrl":"https://doi.org/10.1093/sysbio/syae001","url":null,"abstract":"The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide, and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (S. zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The Continental Divide is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"6 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139400471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. 评估分子和形态进化相关速率检测方法的准确性。
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2023-12-30 DOI: 10.1093/sysbio/syad055
Yasmin Asar, Hervé Sauquet, Simon Y W Ho
{"title":"Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution.","authors":"Yasmin Asar, Hervé Sauquet, Simon Y W Ho","doi":"10.1093/sysbio/syad055","DOIUrl":"10.1093/sysbio/syad055","url":null,"abstract":"<p><p>Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"1337-1356"},"PeriodicalIF":6.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10554842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summary Tests of Introgression Are Highly Sensitive to Rate Variation Across Lineages. 总结性回归测试对不同品系间的比率变异非常敏感。
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2023-12-30 DOI: 10.1093/sysbio/syad056
Lauren E Frankel, Cécile Ané
{"title":"Summary Tests of Introgression Are Highly Sensitive to Rate Variation Across Lineages.","authors":"Lauren E Frankel, Cécile Ané","doi":"10.1093/sysbio/syad056","DOIUrl":"10.1093/sysbio/syad056","url":null,"abstract":"<p><p>The evolutionary implications and frequency of hybridization and introgression are increasingly being recognized across the tree of life. To detect hybridization from multi-locus and genome-wide sequence data, a popular class of methods are based on summary statistics from subsets of 3 or 4 taxa. However, these methods often carry the assumption of a constant substitution rate across lineages and genes, which is commonly violated in many groups. In this work, we quantify the effects of rate variation on the D test (also known as ABBA-BABA test), the D3 test, and HyDe. All 3 tests are used widely across a range of taxonomic groups, in part because they are very fast to compute. We consider rate variation across species lineages, across genes, their lineage-by-gene interaction, and rate variation across gene-tree edges. We simulated species networks according to a birth-death-hybridization process, so as to capture a range of realistic species phylogenies. For all 3 methods tested, we found a marked increase in the false discovery of reticulation (type-1 error rate) when there is rate variation across species lineages. The D3 test was the most sensitive, with around 80% type-1 error, such that D3 appears to more sensitive to a departure from the clock than to the presence of reticulation. For all 3 tests, the power to detect hybridization events decreased as the number of hybridization events increased, indicating that multiple hybridization events can obscure one another if they occur within a small subset of taxa. Our study highlights the need to consider rate variation when using site-based summary statistics, and points to the advantages of methods that do not require assumptions on evolutionary rates across lineages or across genes.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"1357-1369"},"PeriodicalIF":6.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10214455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Artefactual Branch Effect and Phylogenetic Conflict: Species Delimitation with Gene Flow in Mangrove Pit Vipers (Trimeresurus purpureomaculatus-erythrurus Complex). 人工分支效应与系统发育冲突:红树林蝮蛇(Trimeresurus purpureomaculatus-erythrurus Complex)基因流动的物种划分。
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2023-12-30 DOI: 10.1093/sysbio/syad043
Kin Onn Chan, Daniel G Mulcahy, Shahrul Anuar
{"title":"The Artefactual Branch Effect and Phylogenetic Conflict: Species Delimitation with Gene Flow in Mangrove Pit Vipers (Trimeresurus purpureomaculatus-erythrurus Complex).","authors":"Kin Onn Chan, Daniel G Mulcahy, Shahrul Anuar","doi":"10.1093/sysbio/syad043","DOIUrl":"10.1093/sysbio/syad043","url":null,"abstract":"<p><p>Mangrove pit vipers of the Trimeresurus purpureomaculatus-erythrurus complex are the only species of viper known to naturally inhabit mangroves. Despite serving integral ecological functions in mangrove ecosystems, the evolutionary history, distribution, and species boundaries of mangrove pit vipers remain poorly understood, partly due to overlapping distributions, confusing phenotypic variations, and the lack of focused studies. Here, we present the first genomic study on mangrove pit vipers and introduce a robust hypothesis-driven species delimitation framework that considers gene flow and phylogenetic uncertainty in conjunction with a novel application of a new class of speciation-based delimitation model implemented through the program Delineate. Our results showed that gene flow produced phylogenetic conflict in our focal species and substantiates the artefactual branch effect where highly admixed populations appear as divergent nonmonophyletic lineages arranged in a stepwise manner at the basal position of clades. Despite the confounding effects of gene flow, we were able to obtain unequivocal support for the recognition of a new species based on the intersection and congruence of multiple lines of evidence. This study demonstrates that an integrative hypothesis-driven approach predicated on the consideration of multiple plausible evolutionary histories, population structure/differentiation, gene flow, and the implementation of a speciation-based delimitation model can effectively delimit species in the presence of gene flow and phylogenetic conflict.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"1209-1219"},"PeriodicalIF":6.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9904897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cophylogeny Reconstruction Allowing for Multiple Associations Through Approximate Bayesian Computation. 通过近似贝叶斯计算重建允许多重关联的同源关系
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2023-12-30 DOI: 10.1093/sysbio/syad058
Blerina Sinaimeri, Laura Urbini, Marie-France Sagot, Catherine Matias
{"title":"Cophylogeny Reconstruction Allowing for Multiple Associations Through Approximate Bayesian Computation.","authors":"Blerina Sinaimeri, Laura Urbini, Marie-France Sagot, Catherine Matias","doi":"10.1093/sysbio/syad058","DOIUrl":"10.1093/sysbio/syad058","url":null,"abstract":"<p><p>Phylogenetic tree reconciliation is extensively employed for the examination of coevolution between host and symbiont species. An important concern is the requirement for dependable cost values when selecting event-based parsimonious reconciliation. Although certain approaches deduce event probabilities unique to each pair of host and symbiont trees, which can subsequently be converted into cost values, a significant limitation lies in their inability to model the invasion of diverse host species by the same symbiont species (termed as a spread event), which is believed to occur in symbiotic relationships. Invasions lead to the observation of multiple associations between symbionts and their hosts (indicating that a symbiont is no longer exclusive to a single host), which are incompatible with the existing methods of coevolution. Here, we present a method called AmoCoala (an enhanced version of the tool Coala) that provides a more realistic estimation of cophylogeny event probabilities for a given pair of host and symbiont trees, even in the presence of spread events. We expand the classical 4-event coevolutionary model to include 2 additional outcomes, vertical and horizontal spreads, that lead to multiple associations. In the initial step, we estimate the probabilities of spread events using heuristic frequencies. Subsequently, in the second step, we employ an approximate Bayesian computation approach to infer the probabilities of the remaining 4 classical events (cospeciation, duplication, host switch, and loss) based on these values. By incorporating spread events, our reconciliation model enables a more accurate consideration of multiple associations. This improvement enhances the precision of estimated cost sets, paving the way to a more reliable reconciliation of host and symbiont trees. To validate our method, we conducted experiments on synthetic datasets and demonstrated its efficacy using real-world examples. Our results showcase that AmoCoala produces biologically plausible reconciliation scenarios, further emphasizing its effectiveness.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"1370-1386"},"PeriodicalIF":6.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleotide Substitution Model Selection Is Not Necessary for Bayesian Inference of Phylogeny With Well-Behaved Priors. 核苷酸替换模型选择对具有良好先验的系统发育贝叶斯推断并非必要。
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2023-12-30 DOI: 10.1093/sysbio/syad041
Luiza Guimarães Fabreti, Sebastian Höhna
{"title":"Nucleotide Substitution Model Selection Is Not Necessary for Bayesian Inference of Phylogeny With Well-Behaved Priors.","authors":"Luiza Guimarães Fabreti, Sebastian Höhna","doi":"10.1093/sysbio/syad041","DOIUrl":"10.1093/sysbio/syad041","url":null,"abstract":"<p><p>Model selection aims to choose the most adequate model for the statistical analysis at hand. The model must be complex enough to capture the complexity of the data but should be simple enough not to overfit. In phylogenetics, the most common model selection scenario concerns selecting an adequate substitution and partition model for sequence evolution to infer a phylogenetic tree. Previously, several studies showed that substitution model under-parameterization can bias phylogenetic studies. Here, we explored the impact of substitution model over-parameterization in a Bayesian statistical framework. We performed simulations under the simplest substitution model, the Jukes-Cantor model, and compare posterior estimates of phylogenetic tree topologies and tree length under the true model to the most complex model, the $text{GTR}+Gamma+text{I}$ substitution model, including over-splitting the data into additional subsets (i.e., applying partitioned models). We explored 4 choices of prior distributions: the default substitution model priors of MrBayes, BEAST2, and RevBayes and a newly devised prior choice (Tame). Our results show that Bayesian inference of phylogeny is robust to substitution model over-parameterization and over-partitioning but only under our new prior settings. All 3 current default priors introduced biases for the estimated tree length. We conclude that substitution and partition model selection are superfluous steps in Bayesian phylogenetic inference pipelines if well-behaved prior distributions are applied and more effort should focus on more complex and biologically realistic substitution models.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"1418-1432"},"PeriodicalIF":6.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and Accurate Maximum-Likelihood Estimation of Multi-Type Birth-Death Epidemiological Models from Phylogenetic Trees. 从系统发生树快速、准确地估计多类型出生-死亡流行病学模型的最大似然法
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2023-12-30 DOI: 10.1093/sysbio/syad059
Anna Zhukova, Frédéric Hecht, Yvon Maday, Olivier Gascuel
{"title":"Fast and Accurate Maximum-Likelihood Estimation of Multi-Type Birth-Death Epidemiological Models from Phylogenetic Trees.","authors":"Anna Zhukova, Frédéric Hecht, Yvon Maday, Olivier Gascuel","doi":"10.1093/sysbio/syad059","DOIUrl":"10.1093/sysbio/syad059","url":null,"abstract":"<p><p>Multi-type birth-death (MTBD) models are phylodynamic analogies of compartmental models in classical epidemiology. They serve to infer such epidemiological parameters as the average number of secondary infections Re and the infectious time from a phylogenetic tree (a genealogy of pathogen sequences). The representatives of this model family focus on various aspects of pathogen epidemics. For instance, the birth-death exposed-infectious (BDEI) model describes the transmission of pathogens featuring an incubation period (when there is a delay between the moment of infection and becoming infectious, as for Ebola and SARS-CoV-2), and permits its estimation along with other parameters. With constantly growing sequencing data, MTBD models should be extremely useful for unravelling information on pathogen epidemics. However, existing implementations of these models in a phylodynamic framework have not yet caught up with the sequencing speed. Computing time and numerical instability issues limit their applicability to medium data sets (≤ 500 samples), while the accuracy of estimations should increase with more data. We propose a new highly parallelizable formulation of ordinary differential equations for MTBD models. We also extend them to forests to represent situations when a (sub-)epidemic started from several cases (e.g., multiple introductions to a country). We implemented it for the BDEI model in a maximum likelihood framework using a combination of numerical analysis methods for efficient equation resolution. Our implementation estimates epidemiological parameter values and their confidence intervals in two minutes on a phylogenetic tree of 10,000 samples. Comparison to the existing implementations on simulated data shows that it is not only much faster but also more accurate. An application of our tool to the 2014 Ebola epidemic in Sierra-Leone is also convincing, with very fast calculation and precise estimates. As MTBD models are closely related to Cladogenetic State Speciation and Extinction (ClaSSE)-like models, our findings could also be easily transferred to the macroevolution domain.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"1387-1402"},"PeriodicalIF":6.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信