Systematic Biology最新文献

筛选
英文 中文
Alpine Extremophytes in Evolutionary Turmoil: Complex Diversification Patterns and Demographic Responses of a Halophilic Grass in a Central Asian Biodiversity Hotspot. 进化动荡中的高山极端植物:中亚生物多样性热点地区嗜卤禾本科植物的复杂多样性模式和人口响应。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad073
Anna Wróbel, Ewelina Klichowska, Arkadiusz Nowak, Marcin Nobis
{"title":"Alpine Extremophytes in Evolutionary Turmoil: Complex Diversification Patterns and Demographic Responses of a Halophilic Grass in a Central Asian Biodiversity Hotspot.","authors":"Anna Wróbel, Ewelina Klichowska, Arkadiusz Nowak, Marcin Nobis","doi":"10.1093/sysbio/syad073","DOIUrl":"10.1093/sysbio/syad073","url":null,"abstract":"<p><p>Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping the spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of nonclimate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modeling. This study emphasizes the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"263-278"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora. 在复杂的系统发生组数据集中伪造直系同源物和勤奋数据探索的必要性:来自安第斯植物区系的博物学案例研究。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad076
Laura A Frost, Ana M Bedoya, Laura P Lagomarsino
{"title":"Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora.","authors":"Laura A Frost, Ana M Bedoya, Laura P Lagomarsino","doi":"10.1093/sysbio/syad076","DOIUrl":"10.1093/sysbio/syad076","url":null,"abstract":"<p><p>The Andes mountains of western South America are a globally important biodiversity hotspot, yet there is a paucity of resolved phylogenies for plant clades from this region. Filling an important gap in our understanding of the World's richest flora, we present the first phylogeny of Freziera (Pentaphylacaceae), an Andean-centered, cloud forest radiation. Our dataset was obtained via hybrid-enriched target sequence capture of Angiosperms353 universal loci for 50 of the ca. 75 spp., obtained almost entirely from herbarium specimens. We identify high phylogenomic complexity in Freziera, including the presence of data artifacts. Via by-eye observation of gene trees, detailed examination of warnings from recently improved assembly pipelines, and gene tree filtering, we identified that artifactual orthologs (i.e., the presence of only one copy of a multicopy gene due to differential assembly) were an important source of gene tree heterogeneity that had a negative impact on phylogenetic inference and support. These artifactual orthologs may be common in plant phylogenomic datasets, where multiple instances of genome duplication are common. After accounting for artifactual orthologs as source of gene tree error, we identified a significant, but nonspecific signal of introgression using Patterson's D and f4 statistics. Despite phylogenomic complexity, we were able to resolve Freziera into 9 well-supported subclades whose evolution has been shaped by multiple evolutionary processes, including incomplete lineage sorting, historical gene flow, and gene duplication. Our results highlight the complexities of plant phylogenomics, which are heightened in Andean radiations, and show the impact of filtering data processing artifacts and standard filtering approaches on phylogenetic inference.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"308-322"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent Adaptation of True Crabs (Decapoda: Brachyura) to a Gradient of Terrestrial Environments. 真正的螃蟹(十足目:Brachyuna)对陆地环境梯度的趋同适应。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad066
Joanna M Wolfe, Lauren Ballou, Javier Luque, Victoria M Watson-Zink, Shane T Ahyong, Joëlle Barido-Sottani, Tin-Yam Chan, Ka Hou Chu, Keith A Crandall, Savel R Daniels, Darryl L Felder, Harrison Mancke, Joel W Martin, Peter K L Ng, Javier Ortega-Hernández, Emma Palacios Theil, N Dean Pentcheff, Rafael Robles, Brent P Thoma, Ling Ming Tsang, Regina Wetzer, Amanda M Windsor, Heather D Bracken-Grissom
{"title":"Convergent Adaptation of True Crabs (Decapoda: Brachyura) to a Gradient of Terrestrial Environments.","authors":"Joanna M Wolfe, Lauren Ballou, Javier Luque, Victoria M Watson-Zink, Shane T Ahyong, Joëlle Barido-Sottani, Tin-Yam Chan, Ka Hou Chu, Keith A Crandall, Savel R Daniels, Darryl L Felder, Harrison Mancke, Joel W Martin, Peter K L Ng, Javier Ortega-Hernández, Emma Palacios Theil, N Dean Pentcheff, Rafael Robles, Brent P Thoma, Ling Ming Tsang, Regina Wetzer, Amanda M Windsor, Heather D Bracken-Grissom","doi":"10.1093/sysbio/syad066","DOIUrl":"10.1093/sysbio/syad066","url":null,"abstract":"<p><p>For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least 7 and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways. [Brachyura; convergent evolution; crustaceans; divergence times; fossil calibration; molecular phylogeny; terrestrialization; threshold model.].</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"247-262"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DateLife: Leveraging Databases and Analytical Tools to Reveal the Dated Tree of Life. DateLife:利用数据库和分析工具揭示年代久远的生命之树。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae015
Luna L Sánchez Reyes, Emily Jane McTavish, Brian O'Meara
{"title":"DateLife: Leveraging Databases and Analytical Tools to Reveal the Dated Tree of Life.","authors":"Luna L Sánchez Reyes, Emily Jane McTavish, Brian O'Meara","doi":"10.1093/sysbio/syae015","DOIUrl":"10.1093/sysbio/syae015","url":null,"abstract":"<p><p>Chronograms-phylogenies with branch lengths proportional to time-represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at www.datelife.org, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life's phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life's synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife's node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"470-485"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tropical Origin, Global Diversification, and Dispersal in the Pond Damselflies (Coenagrionoidea) Revealed by a New Molecular Phylogeny. 新的分子系统发育揭示了池塘豆娘(Coenagrionoidea)的热带起源、全球多样性和传播。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae004
Beatriz Willink, Jessica L Ware, Erik I Svensson
{"title":"Tropical Origin, Global Diversification, and Dispersal in the Pond Damselflies (Coenagrionoidea) Revealed by a New Molecular Phylogeny.","authors":"Beatriz Willink, Jessica L Ware, Erik I Svensson","doi":"10.1093/sysbio/syae004","DOIUrl":"10.1093/sysbio/syae004","url":null,"abstract":"<p><p>The processes responsible for the formation of Earth's most conspicuous diversity pattern, the latitudinal diversity gradient (LDG), remain unexplored for many clades in the Tree of Life. Here, we present a densely sampled and dated molecular phylogeny for the most speciose clade of damselflies worldwide (Odonata: Coenagrionoidea) and investigate the role of time, macroevolutionary processes, and biome-shift dynamics in shaping the LDG in this ancient insect superfamily. We used process-based biogeographic models to jointly infer ancestral ranges and speciation times and to characterize within-biome dispersal and biome-shift dynamics across the cosmopolitan distribution of Coenagrionoidea. We also investigated temporal and biome-dependent variation in diversification rates. Our results uncover a tropical origin of pond damselflies and featherlegs ~105 Ma, while highlighting the uncertainty of ancestral ranges within the tropics in deep time. Even though diversification rates have declined since the origin of this clade, global climate change and biome-shifts have slowly increased diversity in warm- and cold-temperate areas, where lineage turnover rates have been relatively higher. This study underscores the importance of biogeographic origin and time to diversify as important drivers of the LDG in pond damselflies and their relatives, while diversification dynamics have instead resulted in the formation of ephemeral species in temperate regions. Biome-shifts, although limited by tropical niche conservatism, have been the main factor reducing the steepness of the LDG in the last 30 Myr. With ongoing climate change and increasing northward range expansions of many damselfly taxa, the LDG may become less pronounced. Our results support recent calls to unify biogeographic and macroevolutionary approaches to improve our understanding of how latitudinal diversity gradients are formed and why they vary across time and among taxa.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"290-307"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae). 多种色彩机制的进化与太阳鸟(Nectariniidae)的多样化有关。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae006
Michaël P J Nicolaï, Bert Van Hecke, Svana Rogalla, Gerben Debruyn, Rauri C K Bowie, Nicholas J Matzke, Shannon J Hackett, Liliana D'Alba, Matthew D Shawkey
{"title":"The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae).","authors":"Michaël P J Nicolaï, Bert Van Hecke, Svana Rogalla, Gerben Debruyn, Rauri C K Bowie, Nicholas J Matzke, Shannon J Hackett, Liliana D'Alba, Matthew D Shawkey","doi":"10.1093/sysbio/syae006","DOIUrl":"10.1093/sysbio/syae006","url":null,"abstract":"<p><p>How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"343-354"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological Predictors of Organelle Genome Evolution: Phylogenetic Correlations with Taxonomically Broad, Sparse, Unsystematized Data. 细胞器基因组进化的生态学预测因素:与分类广泛、稀疏、非系统化数据的系统发育相关性。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae009
Konstantinos Giannakis, Luke Richards, Iain G Johnston
{"title":"Ecological Predictors of Organelle Genome Evolution: Phylogenetic Correlations with Taxonomically Broad, Sparse, Unsystematized Data.","authors":"Konstantinos Giannakis, Luke Richards, Iain G Johnston","doi":"10.1093/sysbio/syae009","DOIUrl":"10.1093/sysbio/syae009","url":null,"abstract":"<p><p>Comparative analysis of variables across phylogenetically linked observations can reveal mechanisms and insights in evolutionary biology. As the taxonomic breadth of the sample of interest increases, challenges of data sparsity, poor phylogenetic resolution, and complicated evolutionary dynamics emerge. Here, we investigate a cross-eukaryotic question where all these problems exist: which organismal ecology features are correlated with gene retention in mitochondrial and chloroplast DNA (organelle DNA or oDNA). Through a wide palette of synthetic control studies, we first characterize the specificity and sensitivity of a collection of parametric and non-parametric phylogenetic comparative approaches to identify relationships in the face of such sparse and awkward datasets. This analysis is not directly focused on oDNA, and so provides generalizable insights into comparative approaches with challenging data. We then combine and curate ecological data coupled to oDNA genome information across eukaryotes, including a new semi-automated approach for gathering data on organismal traits from less systematized open-access resources including encyclopedia articles on species and taxa. The curation process also involved resolving several issues with existing datasets, including enforcing the clade-specificity of several ecological features and fixing incorrect annotations. Combining this unique dataset with our benchmarked comparative approaches, we confirm support for several known links between organismal ecology and organelle gene retention, identify several previously unidentified relationships constituting possible ecological contributors to oDNA genome evolution, and provide support for a recently hypothesized link between environmental demand and oDNA retention. We, with caution, discuss the implications of these findings for organelle evolution and of this pipeline for broad comparative analyses in other fields.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"419-433"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Macroevolutionary Signature of Asymmetric Inheritance at Speciation. 探索物种进化过程中不对称遗传的宏观进化特征
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-24 DOI: 10.1093/sysbio/syae043
Thèo Gaboriau, Joseph A Tobias, Daniele Silvestro, Nicolas Salamin
{"title":"Exploring the Macroevolutionary Signature of Asymmetric Inheritance at Speciation.","authors":"Thèo Gaboriau, Joseph A Tobias, Daniele Silvestro, Nicolas Salamin","doi":"10.1093/sysbio/syae043","DOIUrl":"https://doi.org/10.1093/sysbio/syae043","url":null,"abstract":"<p><p>Popular comparative phylogenetic models such as Brownian Motion, Ornstein-Ulhenbeck, and their extensions, assume that, at speciation, a trait value is inherited identically by two descendant species. This assumption contrasts with models of speciation at a micro-evolutionary scale where descendants' phenotypic distributions are sub-samples of the ancestral distribution. Different speciation mechanisms can lead to a displacement of the ancestral phenotypic mean among descendants and an asymmetric inheritance of the ancestral phenotypic variance. In contrast, even macro-evolutionary models that account for intraspecific variance assume symmetrically conserved inheritance of ancestral phenotypic distribution at speciation. Here we develop an Asymmetric Brownian Motion model (ABM) that relaxes the assumption of symmetric and conserved inheritance of the ancestral distribution at the time of speciation. The ABM jointly models the evolution of both intra- and inter-specific phenotypic variation. It also infers the mode of phenotypic inheritance at speciation, which can range from a symmetric and conserved inheritance, where descendants inherit the ancestral distribution, to an asymmetric and displaced inheritance, where descendants inherit divergent phenotypic means and variances. To demonstrate this model, we analyze the evolution of beak morphology in Darwin finches, finding evidence of displacement at speciation. The ABM model helps to bridge micro- and macro-evolutionary models of trait evolution by providing a more robust framework for testing the effects of ecological speciation, character displacement, and niche partitioning on trait evolution at the macro-evolutionary scale.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex but Clear Allopolyploid Pattern of Subtribe Tussilagininae (Asteraceae: Senecioneae) Revealed by Robust Phylogenomic Evidence, with Development of a Novel Homeolog-Sorting Pipeline 通过强有力的系统发生组证据揭示 Tussilaginae 亚族(菊科:番泻叶属)复杂而清晰的异源多倍体模式,开发新型同源物分类管道
IF 6.5 1区 生物学
Systematic Biology Pub Date : 2024-07-22 DOI: 10.1093/sysbio/syae046
Chen Ren, Long Wang, Ze-Long Nie, Ming Tang, Gabriel Johnson, Hui-Tong Tan, Nian-He Xia, Jun Wen, Qin-Er Yang
{"title":"Complex but Clear Allopolyploid Pattern of Subtribe Tussilagininae (Asteraceae: Senecioneae) Revealed by Robust Phylogenomic Evidence, with Development of a Novel Homeolog-Sorting Pipeline","authors":"Chen Ren, Long Wang, Ze-Long Nie, Ming Tang, Gabriel Johnson, Hui-Tong Tan, Nian-He Xia, Jun Wen, Qin-Er Yang","doi":"10.1093/sysbio/syae046","DOIUrl":"https://doi.org/10.1093/sysbio/syae046","url":null,"abstract":"Polyploidy is a significant mechanism in eukaryotic evolution and is particularly prevalent in the plant kingdom. However, our knowledge about this phenomenon and its effects on evolution remains limited. A major obstacle to the study of polyploidy is the great difficulty in untangling the origins of allopolyploids. Due to the drastic genome changes and the erosion of allopolyploidy signals caused by the combined effects of hybridization and complex post-polyploid diploidization processes, resolving the origins of allopolyploids has long been a challenging task. Here we revisit this issue with the interesting case of subtribe Tussilagininae (Asteraceae: Senecioneae) and by developing HomeoSorter, a new pipeline for network inferences by phasing homeologs to parental subgenomes. The pipeline is based on the basic idea of a previous study but with major changes to address the scaling problem and implement some new functions. With simulated data, we demonstrate that HomeoSorter works efficiently on genome-scale data and has high accuracy in identifying polyploid patterns and assigning homeologs. Using HomeoSorter, the maximum pseudo-likelihood model of Phylonet, and genome-scale data, we further address the complex origin of Tussilagininae, a speciose group (ca. 45 genera and 710 species) characterized by having high base chromosome numbers (mainly x = 30, 40). In particular, the inferred patterns are strongly supported by the chromosomal evidence. Tussilagininae is revealed to comprise two large groups with successive allopolyploid origins: Tussilagininae s.s. (mainly x = 30) and the Gynoxyoid group (x = 40). Two allopolyploidy events first give rise to Tussilagininae s.s., with the first event occurring between the ancestor of subtribe Senecioninae (x = 10) and a lineage (highly probably with x = 10) related to the Brachyglottis alliance, and the resulting hybrid lineage crossing with the ancestor of Chersodoma (x = 10) and leading to Tussilagininae s.s. Then, after early diversification, the Central American group (mainly x = 30) of Tussilagininae s.s., is involved in a third allopolyploidy event with, again, the Chersodoma lineage and produces the Gynoxyoid group. Our study highlights the value of HomeoSorter and the homeolog-sorting approach in polyploid phylogenetics. With rich species diversity and clear evolutionary patterns, Tussilagininae s.s. and the Gynoxyoid group are also excellent models for future investigations of polyploidy.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"11 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogeographic history of pigeons and doves drives the origin and diversification of their parasitic body lice. 鸽子和鸽子的生物地理历史推动了其寄生体虱的起源和多样化。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-22 DOI: 10.1093/sysbio/syae038
Andrew D Sweet, Jorge Doña, Kevin P Johnson
{"title":"Biogeographic history of pigeons and doves drives the origin and diversification of their parasitic body lice.","authors":"Andrew D Sweet, Jorge Doña, Kevin P Johnson","doi":"10.1093/sysbio/syae038","DOIUrl":"https://doi.org/10.1093/sysbio/syae038","url":null,"abstract":"<p><p>Despite their extensive diversity and ecological importance, the history of diversification for most groups of parasitic organisms remains relatively understudied. Elucidating broad macroevolutionary patterns of parasites is challenging, often limited by the availability of samples, genetic resources, and knowledge about ecological relationships with their hosts. In this study, we explore the macroevolutionary history of parasites by focusing on parasitic body lice from doves. Building on extensive knowledge of ecological relationships and previous phylogenomic studies of their avian hosts, we tested specific questions about the evolutionary origins of the body lice of doves, leveraging whole genome data sets for phylogenomics. Specifically, we sequenced whole genomes from 68 samples of dove body lice, including representatives of all body louse genera from 51 host taxa. From these data, we assembled >2,300 nuclear genes to estimate dated phylogenetic relationships among body lice and several outgroup taxa. The resulting phylogeny of body lice was well supported, although some branches had conflicting signal across the genome. We then reconstructed ancestral biogeographic ranges of body lice and compared the body louse phylogeny to phylogeny of doves, and also to a previously published phylogeny of the wing lice of doves. Divergence estimates placed the origin of body lice in the late Oligocene. Body lice likely originated in Australasia and dispersed with their hosts during the early Miocene, with subsequent codivergence and host switching throughout the world. Notably, this evolutionary history is very similar to that of dove wing lice, despite the stronger dispersal capabilities of wing lice compared to body lice. Our results highlight the central role of the biogeographic history of host organisms in driving the evolutionary history of their parasites across time and geographic space.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信