线虫进化和起源的系统基因组学研究

IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY
Xue Qing, Y Miles Zhang, Sidi Sun, Mohammed Ahmed, Wen-Sui Lo, Wim Bert, Oleksandr Holovachov, Hongmei Li
{"title":"线虫进化和起源的系统基因组学研究","authors":"Xue Qing, Y Miles Zhang, Sidi Sun, Mohammed Ahmed, Wen-Sui Lo, Wim Bert, Oleksandr Holovachov, Hongmei Li","doi":"10.1093/sysbio/syae073","DOIUrl":null,"url":null,"abstract":"The phylum Nematoda represents one of the most cosmopolitan and abundant metazoan groups on Earth. In this study, we reconstructed the phylogenomic tree for phylum Nematoda. A total of 60 genomes, belonging to eight nematode orders, were newly sequenced, providing the first low-coverage genomes for the orders Dorylaimida, Mononchida, Monhysterida, Chromadorida, Triplonchida, and Enoplida. The resulting phylogeny is well-resolved across most clades, with topologies remaining consistent across various reconstruction parameters. The subclass Enoplia is placed as a sister group to the rest of Nematoda, agreeing with previous published phylogenies. While the order Triplonchida is monophyletic, it is not well-supported, and the order Enoplida is paraphyletic. Taxa possessing a stomatostylet form a monophyletic group; however, the superfamily Aphelenchoidea does not constitute a monophyletic clade. The genera Trichinella and Trichuris are inferred to have shared a common ancestor approximately 202 millions of years ago (Ma), a considerably later period than previously suggested. All stomatostylet-bearing nematodes are proposed to have originated ~305 Ma, corresponding to the transition from the Devonian to the Permian period. The genus Thornia is placed outside of Dorylaimina and Nygolaimina, disagreeing with its position in previous studies. Additionally, we tested the whole genome amplification method and demonstrated that it is a promising strategy for obtaining sufficient DNA for phylogenomic studies of microscopic eukaryotes. This study significantly expanded the current nematode genome dataset, and the well-resolved phylogeny enhances our understanding of the evolution of Nematoda.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"65 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenomic Insights into the Evolution and Origin of Nematoda\",\"authors\":\"Xue Qing, Y Miles Zhang, Sidi Sun, Mohammed Ahmed, Wen-Sui Lo, Wim Bert, Oleksandr Holovachov, Hongmei Li\",\"doi\":\"10.1093/sysbio/syae073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phylum Nematoda represents one of the most cosmopolitan and abundant metazoan groups on Earth. In this study, we reconstructed the phylogenomic tree for phylum Nematoda. A total of 60 genomes, belonging to eight nematode orders, were newly sequenced, providing the first low-coverage genomes for the orders Dorylaimida, Mononchida, Monhysterida, Chromadorida, Triplonchida, and Enoplida. The resulting phylogeny is well-resolved across most clades, with topologies remaining consistent across various reconstruction parameters. The subclass Enoplia is placed as a sister group to the rest of Nematoda, agreeing with previous published phylogenies. While the order Triplonchida is monophyletic, it is not well-supported, and the order Enoplida is paraphyletic. Taxa possessing a stomatostylet form a monophyletic group; however, the superfamily Aphelenchoidea does not constitute a monophyletic clade. The genera Trichinella and Trichuris are inferred to have shared a common ancestor approximately 202 millions of years ago (Ma), a considerably later period than previously suggested. All stomatostylet-bearing nematodes are proposed to have originated ~305 Ma, corresponding to the transition from the Devonian to the Permian period. The genus Thornia is placed outside of Dorylaimina and Nygolaimina, disagreeing with its position in previous studies. Additionally, we tested the whole genome amplification method and demonstrated that it is a promising strategy for obtaining sufficient DNA for phylogenomic studies of microscopic eukaryotes. This study significantly expanded the current nematode genome dataset, and the well-resolved phylogeny enhances our understanding of the evolution of Nematoda.\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syae073\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae073","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线虫门代表了地球上最世界性和最丰富的后生动物群体之一。在这项研究中,我们重建了线虫门的系统基因组树。共获得8个线虫目60个基因组,首次获得Dorylaimida目、Mononchida目、Monhysterida目、Chromadorida目、Triplonchida目和Enoplida目低覆盖基因组。由此产生的系统发育在大多数分支中都得到了很好的解决,拓扑结构在各种重建参数中保持一致。Enoplia亚纲被视为线虫的姐妹类群,与之前发表的系统发生学说一致。而三位一体目是单系的,它没有得到很好的支持,而Enoplida目是副系的。具有气孔花柱的分类群构成一个单系群;然而,超科麻蝇总科并不构成单系进化分支。据推测,旋毛虫属和旋毛虫属在大约2.02亿年前有共同的祖先,这比之前提出的时间要晚得多。所有带气孔柱的线虫都起源于~305 Ma,对应于泥盆纪向二叠纪的过渡。刺属被置于Dorylaimina和Nygolaimina之外,与以前的研究不一致。此外,我们测试了全基因组扩增方法,并证明这是一种有前途的策略,可以获得足够的DNA用于微观真核生物的系统基因组研究。这项研究极大地扩展了现有的线虫基因组数据集,并且很好地解决了系统发育问题,增强了我们对线虫进化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenomic Insights into the Evolution and Origin of Nematoda
The phylum Nematoda represents one of the most cosmopolitan and abundant metazoan groups on Earth. In this study, we reconstructed the phylogenomic tree for phylum Nematoda. A total of 60 genomes, belonging to eight nematode orders, were newly sequenced, providing the first low-coverage genomes for the orders Dorylaimida, Mononchida, Monhysterida, Chromadorida, Triplonchida, and Enoplida. The resulting phylogeny is well-resolved across most clades, with topologies remaining consistent across various reconstruction parameters. The subclass Enoplia is placed as a sister group to the rest of Nematoda, agreeing with previous published phylogenies. While the order Triplonchida is monophyletic, it is not well-supported, and the order Enoplida is paraphyletic. Taxa possessing a stomatostylet form a monophyletic group; however, the superfamily Aphelenchoidea does not constitute a monophyletic clade. The genera Trichinella and Trichuris are inferred to have shared a common ancestor approximately 202 millions of years ago (Ma), a considerably later period than previously suggested. All stomatostylet-bearing nematodes are proposed to have originated ~305 Ma, corresponding to the transition from the Devonian to the Permian period. The genus Thornia is placed outside of Dorylaimina and Nygolaimina, disagreeing with its position in previous studies. Additionally, we tested the whole genome amplification method and demonstrated that it is a promising strategy for obtaining sufficient DNA for phylogenomic studies of microscopic eukaryotes. This study significantly expanded the current nematode genome dataset, and the well-resolved phylogeny enhances our understanding of the evolution of Nematoda.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信