Systematic Biology最新文献

筛选
英文 中文
PhyloJunction: a computational framework for simulating, developing, and teaching evolutionary models. PhyloJunction:模拟、开发和教授进化模型的计算框架。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-08-08 DOI: 10.1093/sysbio/syae048
F Abio K Mendes, Michael J Landis
{"title":"PhyloJunction: a computational framework for simulating, developing, and teaching evolutionary models.","authors":"F Abio K Mendes, Michael J Landis","doi":"10.1093/sysbio/syae048","DOIUrl":"10.1093/sysbio/syae048","url":null,"abstract":"<p><p>We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, test- ing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, thanks to its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data. This paper describes the features of PhyloJunction - which include, but are not limited to, a general implementation of a popular family of phylogenetic diversification models - and, moving forward, how it may be expanded to not only include new models, but to also become a platform for conducting and teaching statistical learning.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Inference Under the Multispecies Coalescent with Ancient DNA Sequences. 古 DNA 序列多物种聚合下的贝叶斯推断。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-30 DOI: 10.1093/sysbio/syae047
Anna A Nagel, Tomáš Flouri, Ziheng Yang, Bruce Rannala
{"title":"Bayesian Inference Under the Multispecies Coalescent with Ancient DNA Sequences.","authors":"Anna A Nagel, Tomáš Flouri, Ziheng Yang, Bruce Rannala","doi":"10.1093/sysbio/syae047","DOIUrl":"https://doi.org/10.1093/sysbio/syae047","url":null,"abstract":"<p><p>Ancient DNA (aDNA) is increasingly being used to investigate questions such as the phylogenetic relationships and divergence times of extant and extinct species. If aDNA samples are sufficiently old, expected branch lengths (in units of nucleotide substitutions) are reduced relative to contemporary samples. This can be accounted for by incorporating sample ages into phylogenetic analyses. Existing methods that use tip (sample) dates infer gene trees rather than species trees, which can lead to incorrect or biased inferences of the species tree. Methods using a multispecies coalescent (MSC) model overcome these issues. We developed an MSC model with tip dates and implemented it in the program bpp. The method performed well for a range of biologically realistic scenarios, estimating calibrated divergence times and mutation rates precisely. Simulations suggest that estimation precision can be best improved by prioritizing sampling of many loci and more ancient samples. Incorrectly treating ancient samples as contemporary in analyzing simulated data, mimicking a common practice of empirical analyses, led to large systematic biases in model parameters, including divergence times. Two genomic datasets of mammoths and elephants were analyzed, demonstrating the method's empirical utility.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAST: Phylogenetic Inference with Mixtures Across Sites and Trees. MAST:利用跨位点和树的混合物进行系统发育推断。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae008
Thomas K F Wong, Caitlin Cherryh, Allen G Rodrigo, Matthew W Hahn, Bui Quang Minh, Robert Lanfear
{"title":"MAST: Phylogenetic Inference with Mixtures Across Sites and Trees.","authors":"Thomas K F Wong, Caitlin Cherryh, Allen G Rodrigo, Matthew W Hahn, Bui Quang Minh, Robert Lanfear","doi":"10.1093/sysbio/syae008","DOIUrl":"10.1093/sysbio/syae008","url":null,"abstract":"<p><p>Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have different evolutionary histories due to incomplete lineage sorting (ILS), introgression, and/or horizontal gene transfer; even single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a multi-tree mixture model that we call mixtures across sites and trees (MAST). This model extends a prior implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each tree to have its own weight, topology, branch lengths, substitution model, nucleotide or amino acid frequencies, and model of rate heterogeneity across sites. We implemented the MAST model in a maximum-likelihood framework in the popular phylogenetic software, IQ-TREE. Simulations show that we can accurately recover the true model parameters, including branch lengths and tree weights for a given set of tree topologies, under a wide range of biologically realistic scenarios. We also show that we can use standard statistical inference approaches to reject a single-tree model when data are simulated under multiple trees (and vice versa). We applied the MAST model to multiple primate datasets and found that it can recover the signal of ILS in the Great Apes, as well as the asymmetry in minor trees caused by introgression among several macaque species. When applied to a dataset of 4 Platyrrhine species for which standard concatenated maximum likelihood (ML) and gene tree approaches disagree, we observe that MAST gives the highest weight (i.e., the largest proportion of sites) to the tree also supported by gene tree approaches. These results suggest that the MAST model is able to analyze a concatenated alignment using ML while avoiding some of the biases that come with assuming there is only a single tree. We discuss how the MAST model can be extended in the future.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"375-391"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Copy Number Hemiplasy on Gene Family Evolution. 拷贝数半重复对基因家族进化的影响
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae007
Qiuyi Li, Yao-Ban Chan, Nicolas Galtier, Celine Scornavacca
{"title":"The Effect of Copy Number Hemiplasy on Gene Family Evolution.","authors":"Qiuyi Li, Yao-Ban Chan, Nicolas Galtier, Celine Scornavacca","doi":"10.1093/sysbio/syae007","DOIUrl":"10.1093/sysbio/syae007","url":null,"abstract":"<p><p>The evolution of gene families is complex, involving gene-level evolutionary events such as gene duplication, horizontal gene transfer, and gene loss, and other processes such as incomplete lineage sorting (ILS). Because of this, topological differences often exist between gene trees and species trees. A number of models have been recently developed to explain these discrepancies, the most realistic of which attempts to consider both gene-level events and ILS. When unified in a single model, the interaction between ILS and gene-level events can cause polymorphism in gene copy number, which we refer to as copy number hemiplasy (CNH). In this paper, we extend the Wright-Fisher process to include duplications and losses over several species, and show that the probability of CNH for this process can be significant. We study how well two unified models-multilocus multispecies coalescent (MLMSC), which models CNH, and duplication, loss, and coalescence (DLCoal), which does not-approximate the Wright-Fisher process with duplication and loss. We then study the effect of CNH on gene family evolution by comparing MLMSC and DLCoal. We generate comparable gene trees under both models, showing significant differences in various summary statistics; most importantly, CNH reduces the number of gene copies greatly. If this is not taken into account, the traditional method of estimating duplication rates (by counting the number of gene copies) becomes inaccurate. The simulated gene trees are also used for species tree inference with the summary methods ASTRAL and ASTRAL-Pro, demonstrating that their accuracy, based on CNH-unaware simulations calibrated on real data, may have been overestimated.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"355-374"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Considering Decoupled Phenotypic Diversification Between Ontogenetic Phases in Macroevolution: An Example Using Triggerfishes (Balistidae). 考虑宏观进化中本体发育阶段之间的脱钩表型多样化:以触发鱼(Balistidae)为例。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae014
Alex Dornburg, Katerina L Zapfe, Rachel Williams, Michael E Alfaro, Richard Morris, Haruka Adachi, Joseph Flores, Francesco Santini, Thomas J Near, Bruno Frédérich
{"title":"Considering Decoupled Phenotypic Diversification Between Ontogenetic Phases in Macroevolution: An Example Using Triggerfishes (Balistidae).","authors":"Alex Dornburg, Katerina L Zapfe, Rachel Williams, Michael E Alfaro, Richard Morris, Haruka Adachi, Joseph Flores, Francesco Santini, Thomas J Near, Bruno Frédérich","doi":"10.1093/sysbio/syae014","DOIUrl":"10.1093/sysbio/syae014","url":null,"abstract":"<p><p>Across the Tree of Life, most studies of phenotypic disparity and diversification have been restricted to adult organisms. However, many lineages have distinct ontogenetic phases that differ from their adult forms in morphology and ecology. Focusing disproportionately on the evolution of adult forms unnecessarily hinders our understanding of the pressures shaping evolution over time. Non-adult disparity patterns are particularly important to consider for coastal ray-finned fishes, which can have juvenile phases with distinct phenotypes. These juvenile forms are often associated with sheltered nursery environments, with phenotypic shifts between adults and juvenile stages that are readily apparent in locomotor morphology. Whether this ontogenetic variation in locomotor morphology reflects a decoupling of diversification dynamics between life stages remains unknown. Here we investigate the evolutionary dynamics of locomotor morphology between adult and juvenile triggerfishes. We integrate a time-calibrated phylogenetic framework with geometric morphometric approaches and measurement data of fin aspect ratio and incidence, and reveal a mismatch between morphospace occupancy, the evolution of morphological disparity, and the tempo of trait evolution between life stages. Collectively, our results illuminate how the heterogeneity of morpho-functional adaptations can decouple the mode and tempo of morphological diversification between ontogenetic stages.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"434-454"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the gold standard in NCBI GenBank and related databases: DNA sequences from type specimens and type strains. 模式标本和类型菌株的DNA序列——如何增加它们的数量并改进它们在NCBI GenBank和相关数据库中的注释。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad068
Susanne S Renner, Mark D Scherz, Conrad L Schoch, Marc Gottschling, Miguel Vences
{"title":"Improving the gold standard in NCBI GenBank and related databases: DNA sequences from type specimens and type strains.","authors":"Susanne S Renner, Mark D Scherz, Conrad L Schoch, Marc Gottschling, Miguel Vences","doi":"10.1093/sysbio/syad068","DOIUrl":"10.1093/sysbio/syad068","url":null,"abstract":"<p><p>Scientific names permit humans and search engines to access knowledge about the biodiversity that surrounds us, and names linked to DNA sequences are playing an ever-greater role in search-and-match identification procedures. Here, we analyze how users and curators of the National Center for Biotechnology Information (NCBI) are flagging and curating sequences derived from nomenclatural type material, which is the only way to improve the quality of DNA-based identification in the long run. For prokaryotes, 18,281 genome assemblies from type strains have been curated by NCBI staff and improve the quality of prokaryote naming. For Fungi, type-derived sequences representing over 21,000 species are now essential for fungus naming and identification. For the remaining eukaryotes, however, the numbers of sequences identifiable as type-derived are minuscule, representing only 739 species of arthropods, 1542 vertebrates, and 125 embryophytes. An increase in the production and curation of such sequences will come from (i) sequencing of types or topotypic specimens in museum collections, (ii) the March 2023 rule changes at the International Nucleotide Sequence Database Collaboration requiring more metadata for specimens, and (iii) efforts by data submitters to facilitate curation, including informing NCBI curators about a specimen's type status. We illustrate different type-data submission journeys and provide best-practice examples from a range of organisms. Expanding the number of type-derived sequences in DNA databases, especially of eukaryotes, is crucial for capturing, documenting, and protecting biodiversity.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"486-494"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Phylogenetic Analysis on Multi-Core Compute Architectures: Implementation and Evaluation of BEAGLE in RevBayes With MPI. 多核计算架构上的贝叶斯系统发育分析:使用 MPI 实现和评估 RevBayes 中的 BEAGLE。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syae005
Killian Smith, Daniel Ayres, René Neumaier, Gert Wörheide, Sebastian Höhna
{"title":"Bayesian Phylogenetic Analysis on Multi-Core Compute Architectures: Implementation and Evaluation of BEAGLE in RevBayes With MPI.","authors":"Killian Smith, Daniel Ayres, René Neumaier, Gert Wörheide, Sebastian Höhna","doi":"10.1093/sysbio/syae005","DOIUrl":"10.1093/sysbio/syae005","url":null,"abstract":"<p><p>Phylogenies are central to many research areas in biology and commonly estimated using likelihood-based methods. Unfortunately, any likelihood-based method, including Bayesian inference, can be restrictively slow for large datasets-with many taxa and/or many sites in the sequence alignment-or complex substitutions models. The primary limiting factor when using large datasets and/or complex models in probabilistic phylogenetic analyses is the likelihood calculation, which dominates the total computation time. To address this bottleneck, we incorporated the high-performance phylogenetic library BEAGLE into RevBayes, which enables multi-threading on multi-core CPUs and GPUs, as well as hardware specific vectorized instructions for faster likelihood calculations. Our new implementation of RevBayes+BEAGLE retains the flexibility and dynamic nature that users expect from vanilla RevBayes. In addition, we implemented native parallelization within RevBayes without an external library using the message passing interface (MPI); RevBayes+MPI. We evaluated our new implementation of RevBayes+BEAGLE using multi-threading on CPUs and 2 different powerful GPUs (NVidia Titan V and NVIDIA A100) against our native implementation of RevBayes+MPI. We found good improvements in speedup when multiple cores were used, with up to 20-fold speedup when using multiple CPU cores and over 90-fold speedup when using multiple GPU cores. The improvement depended on the data type used, DNA or amino acids, and the size of the alignment, but less on the size of the tree. We additionally investigated the cost of rescaling partial likelihoods to avoid numerical underflow and showed that unnecessarily frequent and inefficient rescaling can increase runtimes up to 4-fold. Finally, we presented and compared a new approach to store partial likelihoods on branches instead of nodes that can speed up computations up to 1.7 times but comes at twice the memory requirements.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"455-469"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alpine Extremophytes in Evolutionary Turmoil: Complex Diversification Patterns and Demographic Responses of a Halophilic Grass in a Central Asian Biodiversity Hotspot. 进化动荡中的高山极端植物:中亚生物多样性热点地区嗜卤禾本科植物的复杂多样性模式和人口响应。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad073
Anna Wróbel, Ewelina Klichowska, Arkadiusz Nowak, Marcin Nobis
{"title":"Alpine Extremophytes in Evolutionary Turmoil: Complex Diversification Patterns and Demographic Responses of a Halophilic Grass in a Central Asian Biodiversity Hotspot.","authors":"Anna Wróbel, Ewelina Klichowska, Arkadiusz Nowak, Marcin Nobis","doi":"10.1093/sysbio/syad073","DOIUrl":"10.1093/sysbio/syad073","url":null,"abstract":"<p><p>Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping the spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of nonclimate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modeling. This study emphasizes the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"263-278"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent Adaptation of True Crabs (Decapoda: Brachyura) to a Gradient of Terrestrial Environments. 真正的螃蟹(十足目:Brachyuna)对陆地环境梯度的趋同适应。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad066
Joanna M Wolfe, Lauren Ballou, Javier Luque, Victoria M Watson-Zink, Shane T Ahyong, Joëlle Barido-Sottani, Tin-Yam Chan, Ka Hou Chu, Keith A Crandall, Savel R Daniels, Darryl L Felder, Harrison Mancke, Joel W Martin, Peter K L Ng, Javier Ortega-Hernández, Emma Palacios Theil, N Dean Pentcheff, Rafael Robles, Brent P Thoma, Ling Ming Tsang, Regina Wetzer, Amanda M Windsor, Heather D Bracken-Grissom
{"title":"Convergent Adaptation of True Crabs (Decapoda: Brachyura) to a Gradient of Terrestrial Environments.","authors":"Joanna M Wolfe, Lauren Ballou, Javier Luque, Victoria M Watson-Zink, Shane T Ahyong, Joëlle Barido-Sottani, Tin-Yam Chan, Ka Hou Chu, Keith A Crandall, Savel R Daniels, Darryl L Felder, Harrison Mancke, Joel W Martin, Peter K L Ng, Javier Ortega-Hernández, Emma Palacios Theil, N Dean Pentcheff, Rafael Robles, Brent P Thoma, Ling Ming Tsang, Regina Wetzer, Amanda M Windsor, Heather D Bracken-Grissom","doi":"10.1093/sysbio/syad066","DOIUrl":"10.1093/sysbio/syad066","url":null,"abstract":"<p><p>For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least 7 and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways. [Brachyura; convergent evolution; crustaceans; divergence times; fossil calibration; molecular phylogeny; terrestrialization; threshold model.].</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"247-262"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora. 在复杂的系统发生组数据集中伪造直系同源物和勤奋数据探索的必要性:来自安第斯植物区系的博物学案例研究。
IF 6.1 1区 生物学
Systematic Biology Pub Date : 2024-07-27 DOI: 10.1093/sysbio/syad076
Laura A Frost, Ana M Bedoya, Laura P Lagomarsino
{"title":"Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study from the Andean Flora.","authors":"Laura A Frost, Ana M Bedoya, Laura P Lagomarsino","doi":"10.1093/sysbio/syad076","DOIUrl":"10.1093/sysbio/syad076","url":null,"abstract":"<p><p>The Andes mountains of western South America are a globally important biodiversity hotspot, yet there is a paucity of resolved phylogenies for plant clades from this region. Filling an important gap in our understanding of the World's richest flora, we present the first phylogeny of Freziera (Pentaphylacaceae), an Andean-centered, cloud forest radiation. Our dataset was obtained via hybrid-enriched target sequence capture of Angiosperms353 universal loci for 50 of the ca. 75 spp., obtained almost entirely from herbarium specimens. We identify high phylogenomic complexity in Freziera, including the presence of data artifacts. Via by-eye observation of gene trees, detailed examination of warnings from recently improved assembly pipelines, and gene tree filtering, we identified that artifactual orthologs (i.e., the presence of only one copy of a multicopy gene due to differential assembly) were an important source of gene tree heterogeneity that had a negative impact on phylogenetic inference and support. These artifactual orthologs may be common in plant phylogenomic datasets, where multiple instances of genome duplication are common. After accounting for artifactual orthologs as source of gene tree error, we identified a significant, but nonspecific signal of introgression using Patterson's D and f4 statistics. Despite phylogenomic complexity, we were able to resolve Freziera into 9 well-supported subclades whose evolution has been shaped by multiple evolutionary processes, including incomplete lineage sorting, historical gene flow, and gene duplication. Our results highlight the complexities of plant phylogenomics, which are heightened in Andean radiations, and show the impact of filtering data processing artifacts and standard filtering approaches on phylogenetic inference.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"308-322"},"PeriodicalIF":6.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信