Sustainable Chemistry最新文献

筛选
英文 中文
Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage PET废弃物化学升级制备对苯二甲酸盐氧化还原纳米颗粒储能研究
Sustainable Chemistry Pub Date : 2021-11-03 DOI: 10.3390/suschem2040034
N. Goujon, Jérémy Demarteau, Xabier Lopez de Pariza, N. Casado, H. Sardón, D. Mecerreyes
{"title":"Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage","authors":"N. Goujon, Jérémy Demarteau, Xabier Lopez de Pariza, N. Casado, H. Sardón, D. Mecerreyes","doi":"10.3390/suschem2040034","DOIUrl":"https://doi.org/10.3390/suschem2040034","url":null,"abstract":"Over 30 million ton of poly(ethylene terephthalate) (PET) is produced each year and no more than 60% of all PET bottles are reclaimed for recycling due to material property deteriorations during the mechanical recycling process. Herein, a sustainable approach is proposed to produce redox-active nanoparticles via the chemical upcycling of poly(ethylene terephthalate) (PET) waste for application in energy storage. Redox-active nanoparticles of sizes lower than 100 nm were prepared by emulsion polymerization of a methacrylic-terephthalate monomer obtained by a simple methacrylate functionalization of the depolymerization product of PET (i.e., bis-hydroxy(2-ethyl) terephthalate, BHET). The initial cyclic voltammetry results of the depolymerization product of PET used as a model compound show a reversible redox process, when using a 0.1 M tetrabutylammonium hexafluorophosphate/dimethyl sulfoxide electrolyte system, with a standard redox potential of −2.12 V vs. Fc/Fc+. Finally, the cycling performance of terephthalate nanoparticles was investigated using a 0.1 M TBAPF6 solution in acetonitrile as electrolyte in a three-electrode cell. The terephthalate anode electrode displays good cycling stability and performance at high C-rate (i.e., ≥5C), delivering a stable specific discharge capacity of 32.8 mAh.g−1 at a C-rate of 30 C, with a capacity retention of 94% after 100 cycles. However, a large hysteresis between the specific discharge and charge capacities and capacity fading are observed at lower C-rate (i.e., ≤2C), suggesting some irreversibility of redox reactions associated with the terephthalate moiety, in particular related to the oxidation process.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"33 6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78548888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
TD-DFT Monitoring of the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over the Basque Country, Spain 西班牙巴斯克地区多环芳烃吸收光谱的TD-DFT监测
Sustainable Chemistry Pub Date : 2021-10-29 DOI: 10.3390/suschem2040033
P. González-Berdullas, Luís Pinto da Silva
{"title":"TD-DFT Monitoring of the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over the Basque Country, Spain","authors":"P. González-Berdullas, Luís Pinto da Silva","doi":"10.3390/suschem2040033","DOIUrl":"https://doi.org/10.3390/suschem2040033","url":null,"abstract":"Brown carbon is a type of carbonaceous aerosol with strong light absorption in the ultraviolet and visible wavelengths that leads to radiative forcing. However, it is difficult to correlate the chemical composition of brown carbon with its atmospheric light absorption properties, which translates into significant uncertainty. Thus, a time-dependent density functional theory (TD-DFT) approach was used to model the real-world absorption properties of 14 polycyclic aromatic hydrocarbons (PAHs) over three regions of the Basque Country (Spain): Bilbao, Urretxu, and Azpeitia. The data were corrected for atmospheric concentration. The results show that the absorption spectra over each region are qualitatively identical, with the absorption intensities being significantly higher over Bilbao than over Azpeitia and Urretxu. Furthermore, it was found that the light absorption by PAHs should be more relevant for radiative forcing when it occurs at UVA and (sub)visible wavelengths. Finally, among the 14 studied PAHs, benzo[b]fluoranthene, pyrene, fluoranthene, benzo[a]pyrene, and benzo[k]fluoranthene and benzoperylene were identified as the molecules with larger contributions to radiative forcing.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81996626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Natural Deep Eutectic Solvents (NaDESs) as Alternative Green Extraction Media for Ginger (Zingiber officinale Roscoe) 天然深共晶溶剂(NaDESs)作为生姜(Zingiber officinale Roscoe)绿色萃取介质的选择
Sustainable Chemistry Pub Date : 2021-10-09 DOI: 10.3390/suschem2040032
Andromachi Tzani, Styliani Kalafateli, Grigorios Tatsis, Maria Bairaktari, Ioanna Kostopoulou, A. Pontillo, A. Detsi
{"title":"Natural Deep Eutectic Solvents (NaDESs) as Alternative Green Extraction Media for Ginger (Zingiber officinale Roscoe)","authors":"Andromachi Tzani, Styliani Kalafateli, Grigorios Tatsis, Maria Bairaktari, Ioanna Kostopoulou, A. Pontillo, A. Detsi","doi":"10.3390/suschem2040032","DOIUrl":"https://doi.org/10.3390/suschem2040032","url":null,"abstract":"The extraction of valuable phytochemicals from natural sources is an important and constantly evolving research area. Zingiber officinale Roscoe (ginger) contains high amounts of bioactive phytochemicals, which are desirable due to their significant properties. In this work, the ability of different natural deep eutectic solvents (NaDESs) to serve as green solvents for the preparation of high added value extracts from ginger is explored, in combination with ultrasound assisted extraction. The method was optimized by applying a response surface methodology using the NaDES Bet/La/W (1:2:2.5). Three independent variables, namely the extraction time, ultrasound power and NaDES-to-dry-ginger ratio, were investigated by employing a 17-run three-level Box–Behnken Design (BBD) in order to study the correlation between the extraction conditions and the quality of the obtained extracts. The optimum conditions (in order to achieve simultaneously maximum total phenolic content and antioxidant activity), were found to be 23.8 min extraction time, 60 Watt and NaDES/ginger 25:1 w/w. In the optimum conditions the DPPH radical scavenging ability of the extracts was found to reach IC50 = 18.16 mg/mL after 120 min, whereas the TPC was 20.10 ± 0.26 mg GAE/g of dry ginger. The green methodology was also compared with the extraction using conventional solvents. All the obtained extracts were evaluated for their antioxidant activity and their total phenolic content, while the extract derived by the optimum extraction conditions was further investigated for its ability to bind to calf thymus DNA (ctDNA).","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87813968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials 离子材料中Förster共振能量传递(FRET)的理解
Sustainable Chemistry Pub Date : 2021-10-09 DOI: 10.3390/suschem2040031
Amanda Jalihal, T. Le, Samantha Macchi, Hannah Krehbiel, Mujeebat Bashiru, Mavis Forson, Noureen Siraj
{"title":"Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials","authors":"Amanda Jalihal, T. Le, Samantha Macchi, Hannah Krehbiel, Mujeebat Bashiru, Mavis Forson, Noureen Siraj","doi":"10.3390/suschem2040031","DOIUrl":"https://doi.org/10.3390/suschem2040031","url":null,"abstract":"Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"493 1","pages":"564 - 575"},"PeriodicalIF":0.0,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75200301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis of Sustainable Methods to Recover Neodymium 可持续回收钕的方法分析
Sustainable Chemistry Pub Date : 2021-09-17 DOI: 10.3390/suschem2030030
Kalani Periyapperuma, Laura Sanchez-Cupido, J. Pringle, C. Pozo‐Gonzalo
{"title":"Analysis of Sustainable Methods to Recover Neodymium","authors":"Kalani Periyapperuma, Laura Sanchez-Cupido, J. Pringle, C. Pozo‐Gonzalo","doi":"10.3390/suschem2030030","DOIUrl":"https://doi.org/10.3390/suschem2030030","url":null,"abstract":"Neodymium (Nd) is one of the most essential rare-earth metals due to its outstanding properties and crucial role in green energy technologies such as wind turbines and electric vehicles. Some of the key uses includes permanent magnets present in technological applications such as mobile phones and hard disk drives, and in nickel metal hydride batteries. Nd demand is continually growing, but reserves are severely limited, which has put its continued availability at risk. Nd recovery from end-of-life products is one of the most interesting ways to tackle the availability challenge. This perspective concentrates on the different methods to recover Nd from permanent magnets and rechargeable batteries, covering the most developed processes, hydrometallurgy and pyrometallurgy, and with a special focus on electrodeposition using highly electrochemical stable media (e.g., ionic liquids). Among all the ionic liquid chemistries, only phosphonium ionic liquids have been studied in-depth, exploring the impact of temperature, electrodeposition potential, salt concentration, additives (e.g., water) and solvation on the electrodeposition quality and quantity. Finally, the importance of investigating new ionic liquid chemistries, as well as the effect of other metal impurities in the ionic liquid on the deposit composition or the stability of the ionic liquids are discussed. This points to important directions for future work in the field to achieve the important goal of efficient and selective Nd recovery to overcome the increasingly critical supply problems.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77314075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Energy Densification of Biomass-Derived Furfurals to Furanic Biofuels by Catalytic Hydrogenation and Hydrodeoxygenation Reactions 生物质衍生糠醛催化加氢和加氢脱氧反应制呋喃生物燃料的能量致密化
Sustainable Chemistry Pub Date : 2021-09-16 DOI: 10.3390/suschem2030029
Nivedha Vinod, S. Dutta
{"title":"Energy Densification of Biomass-Derived Furfurals to Furanic Biofuels by Catalytic Hydrogenation and Hydrodeoxygenation Reactions","authors":"Nivedha Vinod, S. Dutta","doi":"10.3390/suschem2030029","DOIUrl":"https://doi.org/10.3390/suschem2030029","url":null,"abstract":"The concomitant hydrolysis and dehydration of biomass-derived cellulose and hemicellulose to furfural (FUR) and 5-(hydroxymethyl)furfural (HMF) under acid catalysis allows a dramatic reduction in the oxygen content of the parent sugar molecules with a 100% carbon economy. However, most applications of FUR or HMF necessitate synthetic modifications. Catalytic hydrogenation and hydrogenolysis have been recognized as efficient strategies for the selective deoxygenation and energy densification of biomass-derived furfurals generating water as the sole byproduct. Efficient and eco-friendly catalysts have been developed for the selective hydrogenation of furfurals affording renewable furanic compounds such as 2-methylfuran, 2,5-dimethylfuran and 2-methyltetrahydrofuran with potential applications as biofuel, solvent and chemical feedstock. Hydrogen gas or hydrogen donor molecules, required for the above processes, can also be renewably obtained from biomass using catalytic processes, enabling a circular economy. In this review, the recent developments in the energy densification of furfurals to furanic compounds of commercial significance are elaborated, emphasizing the role of catalyst and the reaction parameters employed. Critical discussion on sourcing hydrogen gas required for the processes, using hydrogen donor solvents, catalyst design and the potential markets of furanic intermediates have been made. Critical evaluations of the accomplishments and challenges in this field are also provided.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86411950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Highly Selective Economical Sensor for 4-Nitrophenol 一种高选择性经济的4-硝基苯酚传感器
Sustainable Chemistry Pub Date : 2021-08-30 DOI: 10.3390/suschem2030028
Thuy Le, Y. Khan, N. Speller, Mujeebat Bashiru, Samantha Macchi, I. Warner, Noureen Siraj
{"title":"A Highly Selective Economical Sensor for 4-Nitrophenol","authors":"Thuy Le, Y. Khan, N. Speller, Mujeebat Bashiru, Samantha Macchi, I. Warner, Noureen Siraj","doi":"10.3390/suschem2030028","DOIUrl":"https://doi.org/10.3390/suschem2030028","url":null,"abstract":"Herein, an inexpensive commercially available sensor is presented for the detection of 4-nitrophenol (4NP) pollutant. Sodium fluorescein (NaFl) is used as a sensor to detect trace amounts of 4NP in acetonitrile (MeCN). The photophysical properties of NaFl were studied in two different solvents, MeCN (aprotic) and water (protic), with varying concentrations of different nitroaromatics using UV-visible absorption and fluorescence spectrophotometry. In an aqueous medium, photophysical properties of NaFl did not change in the presence of nitroaromatics. However, examination of the photodynamics in MeCN demonstrated that NaFl is extremely sensitive to 4NP (limit of detection: 0.29 µg/mL). This extreme specificity of NaFl towards 4NP when dissolved in MeCN, as compared to other nitroaromatics, is attributed to hydrogen bonding of 4NP with NaFl in the absence of water, resulting in both static and dynamic quenching processes. Thus, NaFl is demonstrated as a simple, inexpensive, sensitive, and robust optical turn off sensor for 4NP.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81018301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Alkyl Levulinates from Furfuryl Alcohol Using CT151 Purolite as Heterogenous Catalyst: Optimization, Purification, and Recycling 以CT151 Purolite为多相催化剂从糠醇制备乙酰丙酸烷基酯:优化、纯化和回收
Sustainable Chemistry Pub Date : 2021-08-13 DOI: 10.3390/suschem2030027
Mattia Annatelli, Giacomo Trapasso, Lucrezia Lena, F. Aricò
{"title":"Alkyl Levulinates from Furfuryl Alcohol Using CT151 Purolite as Heterogenous Catalyst: Optimization, Purification, and Recycling","authors":"Mattia Annatelli, Giacomo Trapasso, Lucrezia Lena, F. Aricò","doi":"10.3390/suschem2030027","DOIUrl":"https://doi.org/10.3390/suschem2030027","url":null,"abstract":"Commercially available Purolite CT151 demonstrated to be an efficient acid catalyst for the synthesis of alkyl levulinates via alcoholysis of furfuryl alcohol (FA) at mild temperatures (80–120 °C) and short reaction time (5 h). Reaction conditions were first optimized for the synthesis of ethyl levulinate and then tested for the preparation of methyl-, propyl-, isopropyl-, butyl, sec-butyl- and allyl levulinate. Preliminary scale-up tests were carried out for most of the alkyl levulinates (starting from 5.0 g of FA) and the resulting products were isolated as pure by distillation in good yields (up to 63%). Furthermore, recycling experiments, conducted for the preparation of ethyl levulinate, showed that both the Purolite CT151 and the exceeding ethanol can be recovered and reused for four consecutive runs without any noticeable loss in the catalyst activity.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"241 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79710449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Terpenes and Terpenoids: Building Blocks to Produce Biopolymers 萜烯和萜类化合物:生产生物聚合物的基石
Sustainable Chemistry Pub Date : 2021-08-12 DOI: 10.3390/suschem2030026
Marta E. G. Mosquera, Gerardo Jiménez, Vanessa Tabernero, Joan Vinueza-Vaca, C. García-Estrada, K. Kosalková, Alberto Sola-Landa, Belén Monje, C. Acosta, Rafael Alonso, Miguel Ángel Valera
{"title":"Terpenes and Terpenoids: Building Blocks to Produce Biopolymers","authors":"Marta E. G. Mosquera, Gerardo Jiménez, Vanessa Tabernero, Joan Vinueza-Vaca, C. García-Estrada, K. Kosalková, Alberto Sola-Landa, Belén Monje, C. Acosta, Rafael Alonso, Miguel Ángel Valera","doi":"10.3390/suschem2030026","DOIUrl":"https://doi.org/10.3390/suschem2030026","url":null,"abstract":"Polymers are essential materials in our daily life. The synthesis of value-added polymers is mainly performed from fossil fuel-derived monomers. However, the adoption of the circular economy model based on the bioeconomy will reduce the dependence on fossil fuels. In this context, biorefineries have emerged to convert biomass into bioenergy and produce high value-added products, including molecules that can be further used as building blocks for the synthesis of biopolymers and bioplastics. The achievement of catalytic systems able to polymerize the natural monomer counterparts, such as terpenes or terpenoids, is still a challenge in the development of polymers with good mechanical, thermal, and chemical properties. This review describes the most common types of bioplastics and biopolymers and focuses specifically on the polymerization of terpenes and terpenoids, which represent a source of promising monomers to create bio-based polymers and copolymers.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77476475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Grape Infusions: Between Nutraceutical and Green Chemistry 葡萄输液:介于营养与绿色化学之间
Sustainable Chemistry Pub Date : 2021-08-05 DOI: 10.3390/suschem2030025
A. Vilela, T. Pinto
{"title":"Grape Infusions: Between Nutraceutical and Green Chemistry","authors":"A. Vilela, T. Pinto","doi":"10.3390/suschem2030025","DOIUrl":"https://doi.org/10.3390/suschem2030025","url":null,"abstract":"By tradition, herbal infusions have been mainly consumed for their pleasant taste, but, nowadays, the consumer, along with the pleasantness of drinking a savory beverage, also looks for their health benefits. Grapes and grape/wine by-products are a rich source of health-promoting compounds, presenting great potential for the development of new beverages. Moreover, grape-infusion preparation is no more than a sustainable or green way of extracting polyphenols and other nutraceutical compounds from grapes and grape leaves. In this review, we summarize the benefits of drinking grape infusions and discuss the sustainable processes of extracting potential nutraceutical compounds from grapes and grape by-products, which are often considered fermentation waste and are discarded to the environment without proper treatment.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"135 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84027818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信