Spe Production & Operations最新文献

筛选
英文 中文
Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics 采用一种新型旋涡流体抽油杆泵系统,通过增强流体动力学来提高产量
4区 工程技术
Spe Production & Operations Pub Date : 2023-05-22 DOI: 10.2118/206908-pa
Corbin Coyes, Benny Williams, Camille Jensen, Mike Conner, Bradley Link, Jeff Saponja, Jordy Quinn
{"title":"Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics","authors":"Corbin Coyes, Benny Williams, Camille Jensen, Mike Conner, Bradley Link, Jeff Saponja, Jordy Quinn","doi":"10.2118/206908-pa","DOIUrl":"https://doi.org/10.2118/206908-pa","url":null,"abstract":"Summary Conventional ball valve systems and insert-guided cages compromise performance due to gas interference, solids accumulation, and ball vibration that shortens the life and efficiency of conventional traveling and standing valve cages. The analysis of the flow profile around a common ball valve resulted in the design of a new proprietary pump system that maximizes fluid flow, creating a vortex profile that extends service life while increasing production. The proprietary vortex fluid pump system was compared against conventional inserts during in-house testing and in a laboratory flow loop. Minimum to maximum flow rates were digitally measured to calculate the pressure drop at each flow rate with and without injecting gas. The transparent flow loop tubing allowed a visual qualitative assessment of fluid flow. During laboratory testing, conventional inserts measured high ball vibration with excessive pressure drop. The proprietary vortex fluid pump system had no ball vibration, with a significant pressure drop decrease, and gas remained entrained as it cycled through a vortex flow. The results from laboratory testing showed an average 40–46% pressure drop decrease compared to conventional inserts. Laboratory data were confirmed in numerous field applications as well as four case studies from four different fields for four separate operators. The vortex fluid pump system showed greater pump efficiencies and pump longevity. After installation of the system, cumulative results were combined to show an average 46% production increase over 485 wells in North America in 1 year. The proprietary vortex fluid pump system decreases erratic velocity profile and reduces vibration in the valve system resulting in improved efficiency and reliability of sucker rod pumps. The design optimizes flow dynamics enabling the ball to remain stationary, allowing smaller and lighter balls and increasing the cross-sectional flow area in the most restrictive pump section. The design reduces solids accumulation, lessens cage wear, improves pump efficiency, and increases production. The vortex fluid pump system replaces all conventional valve systems.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135380932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing 分布式光纤应变传感测量裂缝垂直应变的地质力学建模
4区 工程技术
Spe Production & Operations Pub Date : 2023-04-28 DOI: 10.2118/214690-pa
Aishwarya Srinivasan, Yongzan Liu, Kan Wu, Ge Jin, George Moridis
{"title":"Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing","authors":"Aishwarya Srinivasan, Yongzan Liu, Kan Wu, Ge Jin, George Moridis","doi":"10.2118/214690-pa","DOIUrl":"https://doi.org/10.2118/214690-pa","url":null,"abstract":"Summary Distributed acoustic sensing (DAS) has recently gained importance in monitoring hydraulic fracturing treatments in the oil and gas industry. DAS data contain critical information about the fracture geometry as linearly relatable induced strain variations during the stimulation. The low-frequency components of the DAS (LF-DAS) data are known for their complexity as they exhibit various characteristic signals—caused by several mechanisms—that complicate their interpretation. LF-DAS data from horizontal monitoring wells (HMWs) have been used to detect fracture hits and characterize fracture geometry. However, the LF-DAS data from vertical monitoring wells (VMWs) have not been studied extensively as a means to infer fracture geometry. The major limitation of VMWs is the number of monitored stages, but the data contain more information about fracture height compared with LF-DAS measurements from HMWs. Hence, it is necessary to have a physical rock deformation model to simulate the strain rate responses in offset VMWs during fracture propagation to understand and interpret the various patterns that are observed in the field data sets. The objective of this study is to simulate strain rate signals in VMWs during hydraulic fracturing and to analyze the measurements to obtain information on the fracture geometry, especially the fracture height. The fracture boundary can be directly related to the strain rate signals. In this study, we propose a workflow to determine fracture height at different fiber-to-fracture (dff) distances for fracture heights ranging from 20 m to 300 m. We conduct a detailed sensitivity analysis to understand the impacts of the dff, the perforation location, the fracture passing time, and the well inclinations on the measured strain rate signals. The analysis helps interpret the various patterns observed in field data and the underlying mechanisms. Interpretation of field data from the Hydraulic Fracture Testing Site 2 (HFTS-2) using the results from our forward physical model provides valuable information on the fracture characteristics that can be captured by the physical model. The results of this study are expected to provide better interpretations of LF-DAS signals from VMWs.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136001077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results 高岭石对注入性损害的影响:现场证据和实验室结果
4区 工程技术
Spe Production & Operations Pub Date : 2023-04-05 DOI: 10.2118/210432-pa
S. Renna, L. M. F. Sabatino, A. Viareggio, L. Rossi, M. Colombo, S. Parisi
{"title":"Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results","authors":"S. Renna, L. M. F. Sabatino, A. Viareggio, L. Rossi, M. Colombo, S. Parisi","doi":"10.2118/210432-pa","DOIUrl":"https://doi.org/10.2118/210432-pa","url":null,"abstract":"Summary Clay interaction with fluids is a well-known phenomenon that depends on formation mineralogy. This paper focuses on the impact of kaolinite clay dispersion on well injectivity impairment. It is based on field evidence from more than 50 injectors, and it is supported by a huge set of laboratory tests. All analyzed wells showed an initial injectivity lower than the theoretical potential, estimated on the basis of reservoir quality and drawdown mobilities (DDMs). This impairment occurs before connecting wells to the injection network; therefore, injected water quality and network conditions do not take part in the damage. Consequently, the impairment mechanism seems to be correlated to the interaction between the formation and drilling fluids. A set of laboratory experiments was planned on cuttings collected in two recently drilled wells. Different intervals were selected in the reservoir sandstones, representative of the facies where injected water is most likely to flow. Samples were first mineralogically characterized by different laboratory techniques: Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction, and cation exchange capacity. Then, swelling and recovery tests were performed using different fluids: mud (field formulation), mud filtrate, and water (varying pH and salinity). Results were correlated with petrophysical analysis, mercury injection tests on cores, and major injectivity impairments observed on the analyzed wells. Analyzed samples showed the presence of kaolinite that may affect the formation permeability by filling porosity and pore throats (diagenetic effect). Moreover, in case of interaction with fluids, kaolinite can lead to an additional permeability reduction by disaggregation and dispersion phenomena. Laboratory tests showed a clear trend: The higher the kaolinite content is in the selected intervals, the higher the observed disaggregation will be, especially when the samples interact with mud filtrate and water. It was observed that mud formulation is effective, allowing to preserve disaggregation, but only below a threshold of kaolinite content. Field experience proved that the only effective remedial actions to restore the well injectivity potential are fracturing jobs, allowing bypass of the near-wellbore damaged zone.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136001635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe 基于无量纲人工智能的水平管道多相流型识别模型
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2022-02-01 DOI: 10.2118/209198-pa
Ala AL-Dogail, R. Gajbhiye, Abdullatif Alnajim, Mustafa Alnaser
{"title":"Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe","authors":"Ala AL-Dogail, R. Gajbhiye, Abdullatif Alnajim, Mustafa Alnaser","doi":"10.2118/209198-pa","DOIUrl":"https://doi.org/10.2118/209198-pa","url":null,"abstract":"\u0000 Multiphase flow analysis attracts a lot of attention from researchers from diverse disciplines. There are several studies including experimental, theoretical modeling, and numerical analysis that were carried out to investigate the multiphase flow. However, many facets of multiphase flow are still unresolved owing to the extremely complex nature of the multiphase flow. The complex interactions of the different phases are leading to different flow regimes that are difficult to predict but essential for developing the computational model. The identification of the flow pattern is still a challenging task. One of the growing fields is the machine learning approach, which can address such complex problems. This study aims to use machine learning to develop models that can identify the flow patterns in multiphase flow.\u0000 To achieve the objective, a large set of experimental data was collected. The effect of fluid properties, such as density, viscosity, and surface tension, on the flow pattern was introduced by changing the fluid properties. The wide range of data was processed by applying a machine learning technique for predicting the flow regimes. The models were built using dimensionless parameters to extend their validity for various design and operational conditions. This approach enables to capture the main flow pattern as well as subcategories of flow patterns in the horizontal pipe. Comparison and analyses of the different machine learning tools were carried out to investigate classification of multiphase flow patterns.\u0000 The results showed that different artificial intelligence (AI) methods can predict the flow pattern in horizontal pipes with high accuracy. The results of using Reynold’s number for liquid (ReL) and gas (ReG) as an input to predict the flow patterns are deficient in accuracy for the support vector machine (SVM) and discriminant analysis (DA). However, the prediction capability of the model was improved by introducing Weber’s number for liquid (WeL) and gas (WeG) along with the Reynolds numbers (ReL and ReG). The improvement in the flow pattern prediction owing to the introduction of Weber’s number is speculated because of the capturing hydrodynamic phenomenon (inertia and surface tension) owing to change in fluid properties. It infers that capturing hydrodynamic phenomena affecting the flow pattern and their transition is essential for the prediction of flow patterns in multiphase flow.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43922027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope 阿拉斯加北坡聚合物驱采出液的乳化特性及电解质优化破乳
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2022-02-01 DOI: 10.2118/209213-pa
Hongli Chang, Yin Zhang, A. Dandekar, S. Ning, J. Barnes, W. Schulpen
{"title":"Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope","authors":"Hongli Chang, Yin Zhang, A. Dandekar, S. Ning, J. Barnes, W. Schulpen","doi":"10.2118/209213-pa","DOIUrl":"https://doi.org/10.2118/209213-pa","url":null,"abstract":"\u0000 The first-ever polymer flooding pilot test is currently implemented in heavy oil reservoirs on Alaska North Slope (ANS). One of the major concerns of field engineers is the impact of polymer on oil/water separation after polymer breakthrough. This paper aims to predict the influence of polymer on emulsification characteristics of produced liquid and seek a cost-effective method to treat the produced liquid from polymer flooding. In this study, emulsions, at moderate and vigorous shearing conditions, were prepared by mechanically mixing 25 vol% of the ANS heavy oil with 75 vol% of the polymer solution. Bottle test method, microscope, and pendant drop technique were utilized to investigate the effect of polymer on emulsification characteristics in terms of separation behavior, drop size distribution (DSD), and interfacial properties [i.e., interfacial tension (IFT) and interfacial dilational rheology], respectively. As for chemical demulsification, the performance and interfacial behavior of four commercial demulsifiers and an inorganic salt, that is, potassium chloride (KCl), was measured using simulated produced liquid. The bottle test results demonstrated that polymer could enhance the emulsion stability, resulting in a slower separation rate, poorer water quality, and greater thickness of the intermediate layer. The pendant drop measurements showed that the IFT and interfacial dilational rheology were independent of polymer concentration. Thus, the stabilization effect of the polymer was mainly attributed to the increased viscosity of the continuous phase and the decreased drop size of the dispersed oil phase. As for the chemical demulsification tests, compound demulsifier E12 + E18 exhibited the best demulsification performance as well as the lowest IFT and interfacial elastic modulus. Nevertheless, a multifold dosage of E12 + E18 was required to demulsify the emulsion under vigorous mixing, leading to a potential increase in the chemical cost. A less expensive electrolyte, KCl, was able to work synergistically with demulsifier E12 + E18 to promote oil/water separation and reduce the demulsifier usage. In this proposed demulsifier formula, the mechanism for the effectiveness of the commercial demulsifier was its destructive effect on the interfacial film, while the effectiveness of KCl was mainly dependent on its viscosity reduction effect on the continuous phase. This study illustrates the intermediate layer elimination, and the water quality is the major challenge for produced liquid from polymer flooding and provides both practical and theoretical guidance in advance for the corresponding demulsification strategy of the produced liquid from the ongoing first-ever polymer flooding pilot on ANS.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42017521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Numerical Study on Particle Transport and Placement Behaviors of Ultralow Density Particles in Fracture-Vuggy Reservoirs 裂缝性Vuggy油藏中超低密度颗粒输运和分布特性的数值研究
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2022-02-01 DOI: 10.2118/209193-pa
Tao Zhang, Haoran Gou, Kefan Mu, Jianchun Guo, Ruoyu Yang, Ming Li
{"title":"Numerical Study on Particle Transport and Placement Behaviors of Ultralow Density Particles in Fracture-Vuggy Reservoirs","authors":"Tao Zhang, Haoran Gou, Kefan Mu, Jianchun Guo, Ruoyu Yang, Ming Li","doi":"10.2118/209193-pa","DOIUrl":"https://doi.org/10.2118/209193-pa","url":null,"abstract":"\u0000 A solid/liquid two-phase flow numerical model based on the computational fluid dynamics-discrete element method (CFD-DEM) model was established to study the transport and settlement law of ultralow-density (ULD) particles during the waterdrive channel adjustment of the Tahe carbonate fractured-vuggy reservoir. The mass, momentum, and turbulence equations of the fluid phase were established in Euler coordinates, whereas the particle motion equations were established based on Newton’s second law. The interaction between the ULD particles was described using a soft sphere model, and the water and particle phases were bidirectionally coupled. Meanwhile, virtual experiments were conducted to calibrate the contact parameters of the particles, and parallel plate experiments were performed to validate the model. Using numerical simulations of particle transport behavior in fractures, the process and characteristics of particle transport and placement in fractures are demonstrated, which can be described by the settlement profile angle and equilibrium gap height. According to parameterized simulations, the change law of the settlement profile angle and equilibrium gap height with different parameters such as particle size, pump displacement, and fracture width are demonstrated, which is helpful for the prediction of migration and accumulation of ULD particles in fracture-vuggy reservoirs.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45676525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Test Setup for Deoiling Hydrocyclones Using Conventional Pressure Drop Ratio Control 常规压降比控制水力旋流器脱油试验装置
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2022-01-01 DOI: 10.2118/208608-pa
M. Vallabhan K. G., M. Dudek, C. Holden
{"title":"Experimental Test Setup for Deoiling Hydrocyclones Using Conventional Pressure Drop Ratio Control","authors":"M. Vallabhan K. G., M. Dudek, C. Holden","doi":"10.2118/208608-pa","DOIUrl":"https://doi.org/10.2118/208608-pa","url":null,"abstract":"\u0000 Produced water is a major challenge in the oil and gas industry, especially with the aging of oil fields. Proper treatment of produced water is important in reducing the environmental footprint of oil and gas production. On offshore platforms, hydrocyclones are commonly used for produced-water treatment. However, maintaining the efficiency of hydrocyclones subjected to plant disturbances is a difficult task owing to their compact nature. This paper describes a new experimental test rig built at the Department of Mechanical and Industrial Engineering at the Norwegian University of Science and Technology for testing industrial-scale hydrocyclones. The test setup can emulate first-stage separation and create plant disturbances, such as changes in flow rate, oil concentration, and oil droplet distribution at the inlet of the hydrocyclones. Also, the setup is capable of testing different control algorithms, which helps to maintain the efficiency of hydrocyclones in the presence of such disturbances. The test rig is equipped with various instruments that can monitor such parameters as pressure, flow, temperature, and oil concentration. A typical pressure drop ratio (PDR) control scheme for hydrocyclones is tested in the test rig, which can control the disturbances in the inflow rate. The PDR control scheme does not detect disturbances in the inlet oil concentration and changes in droplet distribution, and these scenarios are shown experimentally in this paper.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47402681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Laboratory Investigation of Impact of Slickwater Composition on Multiphase Permeability Evolution in Tight Sandstones 裂隙水组成对致密砂岩多相渗透率演化影响的室内研究
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2021-12-01 DOI: 10.2118/180250-pa
K. Abaa, J. Wang, D. Elsworth, M. Ityokumbul
{"title":"Laboratory Investigation of Impact of Slickwater Composition on Multiphase Permeability Evolution in Tight Sandstones","authors":"K. Abaa, J. Wang, D. Elsworth, M. Ityokumbul","doi":"10.2118/180250-pa","DOIUrl":"https://doi.org/10.2118/180250-pa","url":null,"abstract":"\u0000 Fracturing fluid filtrate that leaks off during injection is imbibed by strong capillary forces present in low-permeability sandstones and may severely reduce the effective gas permeability during cleanup and post-fracture production. This work aims to investigate the role fracturing fluid filtrate from slickwater has on rock-fluid and fluid-fluid interactions and to quantify the resulting multiphase permeability evolution during imbibition and drainage of the filtrate by means of specialized core laboratory techniques. Three suites of experiments were conducted. In the first suite of experiments, a fluid leakoff test was conducted on selected core samples to determine the extent of polymer invasion and leakoff characteristics. In the second suite, multigas relative permeability measurements were conducted on sandstone plugs saturated with fracturing fluid filtrate. A combination of controlled fluid evaporation and pulse decay permeability technique was used to measure liquid and gas effective permeabilities for both drainage and imbibition cycles. These experiments aim to capture dynamic permeability evolution during invasion and cleanup of fracturing fluid (slickwater). The final suite of experiments consists of adsorption flow tests to investigate, identify, and quantify possible mechanisms for adsorption of the polymeric molecules of friction reducers present in the fluid filtrate to the pore walls of the rock sample. Imbibition tests and observations of contact angles were conducted to validate possible wettability changes.\u0000 Results from multiphase permeability flow tests show an irreversible reduction in endpoint brine permeability and relative permeability with increasing concentration of friction reducer. Our results also show that effective gas permeability during drainage/cleanup of the imbibed slickwater fluid is controlled to a large degree by trapped gas saturation than by changes in interfacial tension. Adsorption flow tests identified adsorption of polymeric molecules of the friction reducer present in the fluid to the pore walls of the rock. The adsorption friction reducer increases the wettability of the rock surface and results in the reduction of liquid relative permeability. The originality of this work is to diagnose formation damage mechanisms from laboratory experiments that adequately capture multiphase permeability evolution specific to a slickwater fluid system, during imbibition and cleanup. This will be useful in optimizing fracturing fluid selection.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41697981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Dual-Directional Flow Control Device for Cyclic Steam Stimulation Applications 用于循环蒸汽增产应用的双向流动控制装置
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2021-12-01 DOI: 10.2118/206270-pa
Da Zhu
{"title":"A Dual-Directional Flow Control Device for Cyclic Steam Stimulation Applications","authors":"Da Zhu","doi":"10.2118/206270-pa","DOIUrl":"https://doi.org/10.2118/206270-pa","url":null,"abstract":"Cyclic steam stimulation (CSS) is one the most effective thermal recovery methods. It is widely used as the primary thermal recovery method to recover heavy oil fields in the Middle East, the Asia-Pacific region, and North and South America. In this paper, a novel dual-directional flow control device (FCD) will be introduced. This FCD technology can allocate accurate steam outflow into the reservoir formation and improve steam quality during the steam injection period and can mitigate steam breakthrough from the neighboring wells during the production period. In the first section, we give a brief introduction on CSS and the main issues encountered in the field operation. A multidirectional flow control nozzle specifically designed for CSS application will be presented. Design philosophy in thermodynamics and hydrodynamics of the nozzle will be discussed in detail. Field performance results, computational fluid dynamics (CFD), and flow loop testing data will be shown to evaluate the performance of the technology. The application of the technology in steam-assisted thermal applications will be introduced. Well-known issues such as erosion and scaling on the FCD tools will be studied in the end.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44624139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Analytical Modeling of Wax Plug Transportation during Pipeline Pigging Using a Foam Pig 泡沫清管器清管过程中蜡塞输送的分析建模
IF 1.2 4区 工程技术
Spe Production & Operations Pub Date : 2021-12-01 DOI: 10.2118/208609-pa
Xuedong Gao, Qiyu Huang, Xun Zhang, Yu Zhang
{"title":"Analytical Modeling of Wax Plug Transportation during Pipeline Pigging Using a Foam Pig","authors":"Xuedong Gao, Qiyu Huang, Xun Zhang, Yu Zhang","doi":"10.2118/208609-pa","DOIUrl":"https://doi.org/10.2118/208609-pa","url":null,"abstract":"\u0000 In our previous article (Gao et al. 2020), a mathematical model including elastic and yield components but not viscous component was developed to predict the wax plug transportation force. In this work, an analytical model was developed to calculate the wax plug transportation force, and the viscous component was introduced into the analytical model to capture some of the time effects. In this analytical model, the viscoelastic behavior of the wax deposit was characterized by a three-parameter model, formulated by adding an additional spring element to the Kelvin-Voight model. The Laplace transformation was used to solve the model. According to the calculated results of the analytical model, the transportation force of the wax plug was observed to slightly increase with time and then tended to level off. To obtain a parameter in the model and verify the model, the pigging experiments were conducted using foam pigs. During the pigging process of the foam pig, the wax plug transportation force in a five-phase wax removal profile was determined by taking the steady wax breaking force from the resistive force of the wax layer. Moreover, the linear increase of the wax plug transportation force per unit contact area with the shear strength of the wax layer was found, as described by the functional relationship in the analytical model. The interfacial lubrication coefficient calculated from the experimental data based on the analytical model is between the coefficient for diesel-prepared deposits and coefficient for oil-A-prepared deposits. Experimental verification results show that the average relative error of the model is 12.47%. Field implication was proposed to illustrate the application of the model and the formation condition of the wax blockage.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49360002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信