{"title":"用于循环蒸汽增产应用的双向流动控制装置","authors":"Da Zhu","doi":"10.2118/206270-pa","DOIUrl":null,"url":null,"abstract":"Cyclic steam stimulation (CSS) is one the most effective thermal recovery methods. It is widely used as the primary thermal recovery method to recover heavy oil fields in the Middle East, the Asia-Pacific region, and North and South America. In this paper, a novel dual-directional flow control device (FCD) will be introduced. This FCD technology can allocate accurate steam outflow into the reservoir formation and improve steam quality during the steam injection period and can mitigate steam breakthrough from the neighboring wells during the production period. In the first section, we give a brief introduction on CSS and the main issues encountered in the field operation. A multidirectional flow control nozzle specifically designed for CSS application will be presented. Design philosophy in thermodynamics and hydrodynamics of the nozzle will be discussed in detail. Field performance results, computational fluid dynamics (CFD), and flow loop testing data will be shown to evaluate the performance of the technology. The application of the technology in steam-assisted thermal applications will be introduced. Well-known issues such as erosion and scaling on the FCD tools will be studied in the end.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Dual-Directional Flow Control Device for Cyclic Steam Stimulation Applications\",\"authors\":\"Da Zhu\",\"doi\":\"10.2118/206270-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclic steam stimulation (CSS) is one the most effective thermal recovery methods. It is widely used as the primary thermal recovery method to recover heavy oil fields in the Middle East, the Asia-Pacific region, and North and South America. In this paper, a novel dual-directional flow control device (FCD) will be introduced. This FCD technology can allocate accurate steam outflow into the reservoir formation and improve steam quality during the steam injection period and can mitigate steam breakthrough from the neighboring wells during the production period. In the first section, we give a brief introduction on CSS and the main issues encountered in the field operation. A multidirectional flow control nozzle specifically designed for CSS application will be presented. Design philosophy in thermodynamics and hydrodynamics of the nozzle will be discussed in detail. Field performance results, computational fluid dynamics (CFD), and flow loop testing data will be shown to evaluate the performance of the technology. The application of the technology in steam-assisted thermal applications will be introduced. Well-known issues such as erosion and scaling on the FCD tools will be studied in the end.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/206270-pa\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/206270-pa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Dual-Directional Flow Control Device for Cyclic Steam Stimulation Applications
Cyclic steam stimulation (CSS) is one the most effective thermal recovery methods. It is widely used as the primary thermal recovery method to recover heavy oil fields in the Middle East, the Asia-Pacific region, and North and South America. In this paper, a novel dual-directional flow control device (FCD) will be introduced. This FCD technology can allocate accurate steam outflow into the reservoir formation and improve steam quality during the steam injection period and can mitigate steam breakthrough from the neighboring wells during the production period. In the first section, we give a brief introduction on CSS and the main issues encountered in the field operation. A multidirectional flow control nozzle specifically designed for CSS application will be presented. Design philosophy in thermodynamics and hydrodynamics of the nozzle will be discussed in detail. Field performance results, computational fluid dynamics (CFD), and flow loop testing data will be shown to evaluate the performance of the technology. The application of the technology in steam-assisted thermal applications will be introduced. Well-known issues such as erosion and scaling on the FCD tools will be studied in the end.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.