Yalong Liu, B. Xin, Zhuoming Chen, Yingqi Xu, Yan Liu, Lifeng Li, Qitong Jiang, Md All Amin Newton
{"title":"Enhanced degradation of methylene blue dye using flexible SiO2–TiO2 nanofiber membranes","authors":"Yalong Liu, B. Xin, Zhuoming Chen, Yingqi Xu, Yan Liu, Lifeng Li, Qitong Jiang, Md All Amin Newton","doi":"10.1680/jsuin.23.00025","DOIUrl":"https://doi.org/10.1680/jsuin.23.00025","url":null,"abstract":"Titanium dioxide (TiO2) is widely regarded as one of the most extensively applied photocatalytic semiconductor materials. However, conventional powdered titanium dioxide exhibits certain limitations, including relatively weak light absorption capability, a small surface area and insufficient active sites. This study successfully prepared flexible and porous silicon dioxide (SiO2)–titanium dioxide nanofiber membranes (NFMs) by implementing electrospinning technology and calcination processes. The porous membranes demonstrate remarkable performance in water treatment, featuring a high specific surface area (49 m2/g) and porosity, enabling efficient adsorption and removal of organic pollutants in water. Remarkably, the NFMs-800 variant exhibits outstanding photocatalytic performance, achieving complete removal of adsorbed organic compounds under ultraviolet irradiation. The design and fabrication methods of this porous membrane are simple and scalable, providing a potential solution for practical water-treatment applications. Consequently, the silicon dioxide–titanium dioxide porous membrane holds significant prospects in the field of water treatment, offering a promising contribution to the attainment of efficient and sustainable water resource management.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46732905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coalescence characteristics of vibrated drops on a wettability gradient surface","authors":"Feng Chen, Zhi-hai Jia, Yong Deng","doi":"10.1680/jsuin.23.00012","DOIUrl":"https://doi.org/10.1680/jsuin.23.00012","url":null,"abstract":"The coalescence characteristics of two vibrated droplets at a certain distance on a microstructured surface with gradient wettability are investigated by a high-speed camera in this work. The results show that the volume ratio of the two droplets has a significant effect on the vibration modes. With the change of the volume ratio, the droplet exhibits different vibration modes, such as the pumping mode (PM), the rocking mode (RM), or the pumping-rocking mixed mode (PRM). In addition, the coalescence time of the two droplets varies with the volume ratio. When the volume ratio is close to 1, the two vibrated droplets are in synchronous pumping mode (SPM) and the coalescence time is the shortest. When the volume ratio is far away from 1, the two droplets may show the rocking mode (RM), the asynchronous pumping mode (APM), or the pumping-rocking mixed mode (PRM). At this point, the coalescence time gets increased, especially for the small volume ratios. Finally, the movement characteristics of the three-phase contact lines are discussed, and a theoretical model is proposed to analyze the coalescence process. This work provides a new method to remove droplets rapidly, which is essential to enhance the heat transfer performance of dropwise condensation.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46529075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Adeel, Adnan Mumtaz, Rony Mia, Muhammad Aftab, Muhammad Hussaan, N. Amin, S. Khan, S. Khattak
{"title":"Microwave-assisted sustainable coloration of wool fabric using Rheum Emodi based natural dye","authors":"S. Adeel, Adnan Mumtaz, Rony Mia, Muhammad Aftab, Muhammad Hussaan, N. Amin, S. Khan, S. Khattak","doi":"10.1680/jsuin.23.00021","DOIUrl":"https://doi.org/10.1680/jsuin.23.00021","url":null,"abstract":"The use of natural colorants in modern dye factories is a potential green chemistry idea that should be widely promoted in order to minimize the wool dyeing’s dependency on some hazardous and non-biodegradable synthetic colors. In this study, an effort was undertaken to see if Rheum Emodi (Rhubarb) extract might be used as a natural dye for wool dyeing for the replacement of synthetic dyes. The dyeing of wool fabric was carried out using microwave (MW) rays’ treatment. By combining several mordants, a stunning color pallet of shades of varying hue and tone was created. Comparative evaluation of the effects of various chemical mordants (aluminum salt, iron salt, tannic acid, and cream of tartar) and bio mordants (pomegranate extract, and pine nut hull extract) on the characteristics of dyed wool samples was carried out to choose the best mordant for each application. It was found that MW treated wool fabric using bio mordant shown higher color fastness value of 4/5 to 5 and color strength value of approximately 10 to 20 rather than using metallic mordant. Scanning electron microscopy (SEM) photographs and Fourier transform infrared spectroscopy (FT-IR) analyses revealed the difference between irradiated and un-irradiated wool fabric. The employment of MW rays and bio-mordants in the natural coloring of wool fabric is encouraged due to their biocompatibility and non-toxicity when combined with MW treatment of wool fabric, as well as their high color fastness and color strength performances. As a result, the naturally extracted dyes from rhubarb can be the replacement of synthetic dyes for the coloration of wool fabric in the textile industry due to their environmental issues.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48378512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and theoretical investigations on synergistic effect of surfactants as corrosion inhibitor on steel in acid medium","authors":"Jia-nan Fan, Heng Yang, Hanwen Zhang, Peng Han, Haobo Yu, Lei Zhang","doi":"10.1680/jsuin.22.01091","DOIUrl":"https://doi.org/10.1680/jsuin.22.01091","url":null,"abstract":"The inhibition performances of inhibitor C8TAB-MP (a mixture of Octyltrimethylammonium bromide (C8TAB) and 4-mercaptopyridine (4MP)), C8TAB and 4MP toward A3 steel in 0.5 M hydrochloric acid solution were studied at 25 °C. The studied inhibitors worked in a hybrid form, mainly controlling the cathodic reaction. Their adsorption follows the Langmuir isotherm, and the compositional combination is superior to the sum of their individual properties. The highest inhibition efficiency of C8TAB-MP was 99.4% at a concentration of 200 mg L−1. Surface morphologies of samples were obtained from AFM tests. Synergistic effect between C8TAB and 4MP is due to the C8TAB molecules donating electrons and the 4MP molecules accepting electrons.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48658379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingya Zhai, Xinming Zhang, Xiaodong Yang, Shuwei Lv, Jinghe Zhao, Lei Bie, Feng Liu
{"title":"Fabrication of robust superhydrophobic-superoleophilic mesh for oil-water separation under harsh environment","authors":"Yingya Zhai, Xinming Zhang, Xiaodong Yang, Shuwei Lv, Jinghe Zhao, Lei Bie, Feng Liu","doi":"10.1680/jsuin.22.01098","DOIUrl":"https://doi.org/10.1680/jsuin.22.01098","url":null,"abstract":"Frequent oil spillage at sea and waste oily water draining cause severe harms to the environment and economy. Although various extreme wettable materials are designed to achieve oil-water separation, there are still limitations such as expensive materials, fluorine-containing reagents, and poor robustness of oil-water separating materials. Here, we resolved the above problems by proposing a simple and low-cost sandblasting plating method with Ni, P, and 1-octadecanethiol modification to manufacture a robust superhydrophobic stainless steel mesh for separating oily water under harsh environments. The mesh can achieve the light and heavy oily water with outstanding separating efficiency and high purity. It can be also used to separate HCl solution, NaOH solution, and NaCl solution-oil, with the separating efficiency larger than 95%. Moreover, the mesh still was superhydrophobic and had outstanding oil-water separating efficiency after sandpaper abrasion, tape stripping, simulated seawater corrosion, and natural environment corrosion tests. Therefore, the robust superhydrophobic stainless steel mesh proposed in this work can very efficiently separate oily water in harsh environments.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42603286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongmiao Liao, Aihua Yi, Wen Zhu, Kang Li, Wenfang Li
{"title":"Effects of tannic acid on film formation process of colored Ti/Zr-based conversion coatings","authors":"Zhongmiao Liao, Aihua Yi, Wen Zhu, Kang Li, Wenfang Li","doi":"10.1680/jsuin.22.01093","DOIUrl":"https://doi.org/10.1680/jsuin.22.01093","url":null,"abstract":"Corrosion of aluminum (Al) alloys represents a major issue in industrial applications, giving rise to safety concerns and enormous economic loss. Chromate conversion coatings (CCC) have been widely used in industry over past decades, providing exceptional corrosion protection at relatively low cost for Al alloys. However, new environmental regulations prohibiting the use of Cr(VI) have raised a growing interest in development of the alternative technologies to CCC, but only titanium/zirconium (Ti/Zr) conversion coatings have been used in industrial applications thus far. However, there remain some disadvantages to these coatings, such as colorless appearance and poor corrosion resistance, which affects their wide application. Here, a colored Ti/Zr-based conversion coating, formed on AA6063 Al alloy using a solution containing C76H52O46(tannic acid, TA), H2ZrF6, H2TiF6, and NaVO3, was developed recently by ours, enabling rapid film-formation at room temperature and improved corrosion resistance. The influence of TA on the film-forming process of colored Ti/Zr-based conversion coatings was investigated using UV-Vis, XPS, and IR techniques, and the possible reaction process after adding TA, as well as the mechanism of rapid film formation and color rendering, were also explored. The results showed that, the large number of organic complexes formed by TA with metal ion during the aging process of conversion solution and film formation are the main reasons for the rapid film formation and color rendering of coating.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47687656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. M. Alotaibi, M. Atta, E. Abdeltwab, A. Atta, M. Abdel-Hamid
{"title":"Surface modifications and optical studies of irradiated flexible PDMS materials","authors":"B. M. Alotaibi, M. Atta, E. Abdeltwab, A. Atta, M. Abdel-Hamid","doi":"10.1680/jsuin.22.01089","DOIUrl":"https://doi.org/10.1680/jsuin.22.01089","url":null,"abstract":"This work aimed to modify the surface properties of polydimethylsiloxane (PDMS) for used in optoelectronic devices utilizing handmade ion source. The films were exposed to hydrogen fluence of 6x1017, 9x1017, and 12x1017 ions/cm2. XRD as well as FTIR were used to reveal the changes in PDMS after irradiation. Similarly, SEM is employed to examine the morphological alterations of irradiated surfaces. The band gap and band tail of pristine and treated films were estimated using Tauc’s methodology. By raising hydrogen fluence from 6x1017 ions/cm2 to 12x1017 ions/cm2, the band gap is lowered from 5.06 eV to 4.86 eV. Furthermore, the band tail energy is improved from 0.53 eV for PVA to 0.55 eV for 6x1017 and to 0.63 eV for 9x1017 ions/cm2. In addition, the dispersion characteristics of were estimated using the Wemple Di-Domenico method. Moreover, the extinction coefficients and refractive index were calculated. The recorded relaxation time is reduced from 2.06x10−7 sec to 1.65x10−7 sec respectively, by enhancing ion fluence from 6x1017 to 12x1017 ions/cm2. According to the finding results, ion beam irradiation is induced modification in the irradiated films for used in optical devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48681574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Syam Hasan, Alma Nunez, Michael Nosonovsky, Marcia R. Silva
{"title":"Prediction of Escherichia coli concentration from wetting properties of beach sand using machine learning models","authors":"Md Syam Hasan, Alma Nunez, Michael Nosonovsky, Marcia R. Silva","doi":"10.1680/jsuin.22.01087","DOIUrl":"https://doi.org/10.1680/jsuin.22.01087","url":null,"abstract":"The presence of Escherichia coli (E. coli) in beach sand is directly related to public health outcomes. Physicochemical and wetting properties of sand influence the survival and proliferation of these indicator bacteria. In this study, we aim to predict E. coli concentration using some of these properties including zeta potential, moisture content, BET surface area, BET pore radius, state of sand, processing temperature, and water contact angle of the beach sand. We have developed five Machine Learning regression models including the Artificial Neural Network (ANN), Support Vector Machine (SVM), Gradient Boosting Machine (GBM), Random Forest (RF), and k-Nearest Neighbors (KNN) for this. ANN outperformed other models in predicting E. coli concentration. In the data-driven analysis, the state of sand, processing temperature, and the contact angle presenting the wettability of the sand are identified as the most crucial parameters in predicting E. coli concentration.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42157389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}