A. Starostin, V. Strelnikov, L. Dombrovsky, S. Shoval, O. Gendelman, E. Bormashenko
{"title":"Effects of asymmetric cooling and surface wettability on the orientation of the freezing tip","authors":"A. Starostin, V. Strelnikov, L. Dombrovsky, S. Shoval, O. Gendelman, E. Bormashenko","doi":"10.1680/jsuin.22.01081","DOIUrl":null,"url":null,"abstract":"Freezing of water droplets placed on the bare and superhydrophobic surfaces of polymer wedges is studied both experimentally and computationally. Two-dimensional numerical calculations of the transient temperature field in a chilled polymer wedge show that the direction of heat flux from the droplet through the thermal contact region with the wedge differs significantly from the normal to the wedge surface. A novel approximate computational model is proposed that takes into account the variable area of the water freezing front in the droplet. This model gives a quantitative estimate of the faster freezing of the droplet on the bare surface. The obtained numerical results agree with the laboratory measurements. The velocity of the crystallization front and the droplet deformation including the so-called freezing tip formation are monitored in the experiment. The direction of the freezing cone axis appears to be noticeably different for the cases of bare and superhydrophobic wedge surfaces. This is explained by the fact that the direction of the freezing cone axis is controlled by the local direction of the heat flux. For a hydrophobic wedge surface, the deviation of the freezing tip from the vertical is smaller, because the reduced thermal contact area reduces the influence of the heat flux direction at the wedge surface.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01081","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Freezing of water droplets placed on the bare and superhydrophobic surfaces of polymer wedges is studied both experimentally and computationally. Two-dimensional numerical calculations of the transient temperature field in a chilled polymer wedge show that the direction of heat flux from the droplet through the thermal contact region with the wedge differs significantly from the normal to the wedge surface. A novel approximate computational model is proposed that takes into account the variable area of the water freezing front in the droplet. This model gives a quantitative estimate of the faster freezing of the droplet on the bare surface. The obtained numerical results agree with the laboratory measurements. The velocity of the crystallization front and the droplet deformation including the so-called freezing tip formation are monitored in the experiment. The direction of the freezing cone axis appears to be noticeably different for the cases of bare and superhydrophobic wedge surfaces. This is explained by the fact that the direction of the freezing cone axis is controlled by the local direction of the heat flux. For a hydrophobic wedge surface, the deviation of the freezing tip from the vertical is smaller, because the reduced thermal contact area reduces the influence of the heat flux direction at the wedge surface.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.