Solar Energy Materials最新文献

筛选
英文 中文
Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives 微生物电合成系统中用于二氧化碳还原的正极材料:最新进展和展望
Solar Energy Materials Pub Date : 2023-11-09 DOI: 10.20517/energymater.2023.60
Su Hui, Yujing Jiang, Yuanfan Jiang, Zhaoyuan Lyu, Shichao Ding, Bing Song, Wenlei Zhu, Jun-Jie Zhu
{"title":"Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives","authors":"Su Hui, Yujing Jiang, Yuanfan Jiang, Zhaoyuan Lyu, Shichao Ding, Bing Song, Wenlei Zhu, Jun-Jie Zhu","doi":"10.20517/energymater.2023.60","DOIUrl":"https://doi.org/10.20517/energymater.2023.60","url":null,"abstract":"Microbial electrosynthesis (MES) is an emerging technology that enables the synthesis of value-added chemicals from carbon dioxide (CO2) or inorganic carbon compounds by coupling renewable electricity to microbial metabolism. However, MES still faces challenges in achieving high production of value-added chemicals due to the limited extracellular electron transfer efficiency at the biotic-abiotic interfaces. To overcome this bottleneck, it is crucial to develop novel cathodes and modified materials. This review systematically summarizes recent advancements in cathode materials in the field of electrocatalyst-assisted and photocatalyst-assisted MES. The effects of various material types are further investigated by comparing metal-free and metal materials and photocatalyst materials of different semiconductor types. Additionally, the review introduces the maximum production rate of value-added chemicals and conversion efficiency achieved by these cathode materials while highlighting the advantages and disadvantages of different material types. To the best of our knowledge, in electrocatalyst-assisted systems, the maximum CH4 yield on graphene aerogel/polypyrrole cathode achieved 1,672 mmol m-2 d-1, and the maximum Faraday efficiency (FE) of CH4 reached up to 97.5% on graphite plate. Meanwhile, the maximum acetate yield achieved 1,330 g m-2 d-1 with CO2 conversion efficiency into acetate close to 100% on carbon nanotube cathodes. In photocatalyst-assisted systems, the maximum acetate yield could reach 0.51 g L-1 d-1 with the coulombic efficiency of 96% on the MnFe2O4/g-C3N4 photocathode. Finally, prospects for future development and practical applications of MES are discussed, offering theoretical guidance for the fabrication of cathode materials that can improve production efficiency and reduce energy input.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":" 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies towards inhibition of aluminum current collector corrosion in lithium batteries 抑制锂电池铝集流器腐蚀的策略
Solar Energy Materials Pub Date : 2023-11-08 DOI: 10.20517/energymater.2023.53
Changxing Han, Guansheng Chen, Yu Ma, Jun Ma, Xiong Shui, Shanmu Dong, Gaojie Xu, Xinhong Zhou, Zili Cui, Lixin Qiao, Guanglei Cui
{"title":"Strategies towards inhibition of aluminum current collector corrosion in lithium batteries","authors":"Changxing Han, Guansheng Chen, Yu Ma, Jun Ma, Xiong Shui, Shanmu Dong, Gaojie Xu, Xinhong Zhou, Zili Cui, Lixin Qiao, Guanglei Cui","doi":"10.20517/energymater.2023.53","DOIUrl":"https://doi.org/10.20517/energymater.2023.53","url":null,"abstract":"Aluminum (Al) foil, serving as the predominant current collector for cathode materials in lithium batteries, is still unsatisfactory in meeting the increasing energy density demand of rechargeable energy storage systems due to its severe corrosion under high voltages. Such Al corrosion may cause delamination of cathodes, increasement of internal resistance, and catalysis of electrolyte decomposition, thus leading to premature failure of batteries. Hence, a systematic understanding of the corrosion mechanisms and effective anticorrosion strategies are necessary to enhance overall performance of lithium batteries. In this review, the corrosive mechanisms related to Al current collectors are systematically summarized and clarified. In addition, an overview on recent progress and advancement of strategies toward inhibiting Al corrosion is presented. In the end, we also provide a perspective with motivation to stimulate new ideas and research directions to further inhibit Al corrosion to achieve high energy density, long cycle life, and high safety of lithium batteries.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"115 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorine chemistry in lithium-ion and sodium-ion batteries 锂离子和钠离子电池中的氟化学
Solar Energy Materials Pub Date : 2023-11-08 DOI: 10.20517/energymater.2023.61
Zibing Pan, Huaqi Chen, Yubin Zeng, Yan Ding, Xiangjun Pu, Zhongxue Chen
{"title":"Fluorine chemistry in lithium-ion and sodium-ion batteries","authors":"Zibing Pan, Huaqi Chen, Yubin Zeng, Yan Ding, Xiangjun Pu, Zhongxue Chen","doi":"10.20517/energymater.2023.61","DOIUrl":"https://doi.org/10.20517/energymater.2023.61","url":null,"abstract":"As the peculiar element in the Periodic Table of Elements, fluorine gas owns the highest standard electrode potential of 2.87 V vs. F-, and a fluorine atom has the maximum electronegativity. Benefiting from the prominent property, fluorine plays an important role in the development of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) in terms of cathode materials (transition metal fluorides, fluorinated polyanionic compounds), electrolytes, and interfaces. In cathode materials, the highly electronegative renders enhanced ionic character of transition metal fluorine bonds and correspondingly high working potential in electrolytes; fluorinated electrolytes possess good antioxidant ability and flame retardance, which can significantly improve the thermal safety of a battery. On an electrode-electrolyte interface, the fluorine-rich inorganic component (such as LiF and NaF) is essential for the formation of a robust and stable solid electrolyte interface on anodes. Despite the remarkable advances achieved in fluorinated cathodes, electrolytes, and interfaces, there is still a lack of comprehensive understanding of the function of fluorides in LIBs and SIBs. Accordingly, this review briefly summarized the recent progress of fluorine-based electrodes, electrolytes, and interfaces and highlighted the correlation between the composition, property, and function to reveal the fluorine chemistry in LIBs and SIBs. This review will provide guidance for the rational design and targeted regulation of fluorine-dominated high-performance electrode materials, functionalized electrolytes, and consolidated interfaces.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"18 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient separation and selective Li recycling of spent LiFePO4 cathode 废LiFePO4阴极的高效分离与选择性锂回收
Solar Energy Materials Pub Date : 2023-11-08 DOI: 10.20517/energymater.2023.57
Yuelin Kong, Lixia Yuan, Yaqi Liao, Yudi Shao, Shuaipeng Hao, Yunhui Huang
{"title":"Efficient separation and selective Li recycling of spent LiFePO<sub>4</sub> cathode","authors":"Yuelin Kong, Lixia Yuan, Yaqi Liao, Yudi Shao, Shuaipeng Hao, Yunhui Huang","doi":"10.20517/energymater.2023.57","DOIUrl":"https://doi.org/10.20517/energymater.2023.57","url":null,"abstract":"Given the fast-growing demand for lithium-ion batteries (LIBs) and the upcoming climax of LIB retirement, efficient recycling of spent LIBs has shown increasing importance in both economic benefit and environmental conservation. The LIBs with LiFePO4 (LFP) cathodes account for half of the LIB market, so developing an appropriate recycling way for spent LFP (SLFP) batteries is imperative. In this work, a closed-loop regeneration of SLFP cathodes is proposed, in which a facile cold stimulation route is invented to peel the SLFP layer from Al foil, and then Li and Fe elements are selectively and efficiently extracted from the peeling SLFP layer under mild conditions based on an oxidant of NaClO. The leaching rate of elemental Li could reach 98.3%, and the regenerated LFP synthesized by recovered Li2CO3 and FePO4 shows exceptional performance with a discharge capacity of 162.6 mAh g-1 at 0.5 C. This regeneration route has greatly reduced the use of chemical reagents, shortened the process of impurity removal, and, therefore, realized the closed-loop regeneration of SLFP batteries.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"67 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement 电催化氧还原反应的无pgm碳基催化剂:活性位点和活性增强
Solar Energy Materials Pub Date : 2023-11-07 DOI: 10.20517/energymater.2023.52
Kai Wei, Xian Wang, Junjie Ge
{"title":"PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement","authors":"Kai Wei, Xian Wang, Junjie Ge","doi":"10.20517/energymater.2023.52","DOIUrl":"https://doi.org/10.20517/energymater.2023.52","url":null,"abstract":"Exploring high-activity, low-cost platinum group metal-free (PGM-free) oxygen reduction reaction (ORR) electrocatalysts to replace precious metal Pt is critical for large-scale fuel cell applications. Owing to their wide source, controllable composition, low price, and excellent performance, the PGM-free carbon-based electrocatalysts have attracted great interest in academia and are expected to be an ideal replacement for precious metal electrocatalysts. In this review, we mainly focus on PGM-free carbon-based electrocatalysts and first introduce the ORR mechanisms and the active site classification of PGM-free carbon-based electrocatalysts. Then, we propose four strategies to enhance the ORR activity of electrocatalysts from the active site perspective based on the relationship between the structure and function of active sites. Finally, we present the current challenges and prospects for developing ORR electrocatalysts exhibiting high performance and stability.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"51 40","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135432101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer 甲基丙烯酸酯聚合物中咪唑型质子离子液体结构电池电解质的离子输运、力学性能和弛豫动力学
Solar Energy Materials Pub Date : 2023-11-07 DOI: 10.20517/energymater.2023.49
Achilleas Pipertzis, Nicole Abdou, Johanna Xu, Leif E. Asp, Anna Martinelli, Jan Swenson
{"title":"Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer","authors":"Achilleas Pipertzis, Nicole Abdou, Johanna Xu, Leif E. Asp, Anna Martinelli, Jan Swenson","doi":"10.20517/energymater.2023.49","DOIUrl":"https://doi.org/10.20517/energymater.2023.49","url":null,"abstract":"The effect of confining a liquid electrolyte into a polymer matrix was studied by means of Raman spectroscopy, differential scanning calorimetry, temperature-modulated differential scanning calorimetry, dielectric spectroscopy, and rheology. The polymer matrix was obtained from thermal curing ethoxylated bisphenol A dimethacrylate while the liquid electrolyte consisted of a protic ionic liquid based on the ethyl-imidazolium cation [C2HIm] and the bis(trifluoromethanesulfonyl)imide [TFSI] anion, doped with LiTFSI salt. We report that the confined liquid phase exhibits the following characteristics: (i) a distinctly reduced degree of crystallinity; (ii) a broader distribution of relaxation times; (iii) reduced dielectric strength; (iv) a reduced cooperativity length scale at the liquid-to-glass transition temperature (T g); and (v) up-speeded local T g-related ion dynamics. The latter is indicative of weak interfacial interactions between the two nanophases and a strong geometrical confinement effect, which dictates both the ion dynamics and the coupled structural relaxation, hence lowering Tg by about 4 K. We also find that at room temperature, the ionic conductivity of the structural electrolyte achieves a value of 0.13 mS/cm, one decade lower than the corresponding bulk electrolyte. Three mobile ions (Im+, TFSI-, and Li+) contribute to the measured ionic conductivity, implicitly reducing the Li+ transference number. In addition, we report that the investigated solid polymer electrolytes exhibit the shear modulus needed for transferring the mechanical load to the carbon fibers in a structural battery. Based on these findings, we conclude that optimized microphase-separated polymer electrolytes, including a protic ionic liquid, are promising for the development of novel multifunctional electrolytes for use in future structural batteries.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"49 41","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135432602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Could potassium-ion batteries become a competitive technology? 钾离子电池能成为一项有竞争力的技术吗?
Solar Energy Materials Pub Date : 2023-11-02 DOI: 10.20517/energymater.2023.41
Maider Zarrabeitia, Javier Carretero-González, Michal Leskes, Henry Adenusi, Boyan Iliev, Thomas J. S. Schubert, Stefano Passerini, Elizabeth Castillo-Martínez
{"title":"Could potassium-ion batteries become a competitive technology?","authors":"Maider Zarrabeitia, Javier Carretero-González, Michal Leskes, Henry Adenusi, Boyan Iliev, Thomas J. S. Schubert, Stefano Passerini, Elizabeth Castillo-Martínez","doi":"10.20517/energymater.2023.41","DOIUrl":"https://doi.org/10.20517/energymater.2023.41","url":null,"abstract":"Potassium-ion batteries (PIBs) have attracted significant attention as a complement to lithium-ion and sodium-ion batteries (SIBs). PIBs can theoretically provide higher specific energy and power density than SIBs due to lower standard electrode potential of K/K+ and faster K+ ion diffusion, maintaining the benefits of low-cost and sustainability. However, research on PIBs is in its infancy; therefore, further efforts are necessary to enhance their performance and position them as a competitive technology. In this perspective, the remaining challenges and possible strategies to advance the development of PIBs are presented.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"57 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications 用于电池和电催化应用的自插层二维材料的理论证据
Solar Energy Materials Pub Date : 2023-11-02 DOI: 10.20517/energymater.2023.43
Ke Fan, Yuen Hong Tsang, Haitao Huang
{"title":"Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications","authors":"Ke Fan, Yuen Hong Tsang, Haitao Huang","doi":"10.20517/energymater.2023.43","DOIUrl":"https://doi.org/10.20517/energymater.2023.43","url":null,"abstract":"Covalently bonded two-dimensional (2D) self-intercalated transition metal chalcogenides (i.e., ic-2Ds) have been recently fabricated experimentally, and their properties are highly tunable by stoichiometry and composition. Inspired by this progress, we focus on the applications of ic-2Ds in the field of electrochemistry and systematically investigate their performance in lithium-ion batteries (LIBs) and electrocatalytic hydrogen evolution reactions (HER). By means of density functional theory calculations, seven 3d -metal ic-2Ds are confirmed to be thermodynamically, mechanically, and thermally stable. The metallicity and abundant active sites endow these ic-2Ds with the potential as excellent electrode materials and HER catalysts. Among them, Ti7S12 and V7S12 exhibit the potential as anode materials for LIBs, showing low Li diffusion energy barriers, suitable open-circuit voltages, and ultrahigh capacity of 745.6 and 723.9 mA hg-1, respectively; Cr7S12 and Co7S12 show promises for HER with moderate hydrogen adsorption strengths. This theoretical study provides a new avenue for the application of newly reported ic-2Ds in various electrochemical energy conversion and storage applications.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"8 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-stability room temperature ionic liquids: enabling efficient charge transfer in solid-state batteries by minimizing interfacial resistance 高稳定性的室温离子液体:通过最小化界面电阻,在固态电池中实现有效的电荷转移
Solar Energy Materials Pub Date : 2023-11-02 DOI: 10.20517/energymater.2023.47
Seonghun Jeong, Van-Chuong Ho, Ohmin Kwon, Yuwon Park, Junyoung Mun
{"title":"High-stability room temperature ionic liquids: enabling efficient charge transfer in solid-state batteries by minimizing interfacial resistance","authors":"Seonghun Jeong, Van-Chuong Ho, Ohmin Kwon, Yuwon Park, Junyoung Mun","doi":"10.20517/energymater.2023.47","DOIUrl":"https://doi.org/10.20517/energymater.2023.47","url":null,"abstract":"Currently, intensive research is underway to develop stable electrolyte systems that can significantly enhance the performance of rechargeable batteries. Recent advances in solid electrolytes have led to new types of promising systems owing to their high conductivity. This has generated considerable interest in the practical applications of safe batteries. Considering the safety concerns associated with rechargeable batteries, solid electrolytes have become indispensable for the advancement of next-generation battery technologies. However, the increased interfacial resistance at solid-solid interfaces has become a critical challenge. To address this problem, room-temperature ionic liquids (RTILs) have been investigated as functional materials for mitigating the interfacial resistance in solid-state batteries (SSBs). The special properties of RTILs, such as their non-volatility, non-flammability, and high safety characteristics, make them highly promising candidates for safe batteries. Various approaches have been explored for the effective utilization of ionic liquids in SSBs. This review provides a comprehensive discussion on the application of RTILs as electrolytes, considering their electrochemical properties and incorporation into composites to minimize resistance in SSBs.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"42 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective behavior of phosphonate-functionalized imidazolium ionic liquid and its impact on the Li-ion battery performance 磷酸盐功能化咪唑离子液体的保护行为及其对锂离子电池性能的影响
Solar Energy Materials Pub Date : 2023-10-10 DOI: 10.20517/energymater.2023.33
Kaisi Liao, Jingbo Song, Jiawen Ge, Jia Si, Yinxiao Cai, Zijuan Luo, Mingjiong Zhou, Hongze Liang, Ya-Jun Cheng, Marija Milanovic, Atsushi Inoishi, Shigeto Okada
{"title":"Protective behavior of phosphonate-functionalized imidazolium ionic liquid and its impact on the Li-ion battery performance","authors":"Kaisi Liao, Jingbo Song, Jiawen Ge, Jia Si, Yinxiao Cai, Zijuan Luo, Mingjiong Zhou, Hongze Liang, Ya-Jun Cheng, Marija Milanovic, Atsushi Inoishi, Shigeto Okada","doi":"10.20517/energymater.2023.33","DOIUrl":"https://doi.org/10.20517/energymater.2023.33","url":null,"abstract":"The commercial lithium-ion batteries (LIBs) rely on lithium hexafluorophosphate (LiPF6), which is extremely sensitive to moisture and liable to thermal decomposition. Lithium bis (trifluoro methane sulfonyl) imide (LiTFSI), as a promising electrolyte salt, possesses high thermal stability and excellent moisture tolerance. However, LiTFSI is closely related to severe corrosion of the aluminum (Al) current collector at high voltage. Herein, phosphonate-functionalized imidazolium ionic liquid (PFIL) is developed and utilized as an electrolyte co-solvent to inhibit the oxidative dissolution of the Al current collector. PFIL can suppress Al corrosion by participating in the interface reaction and forming a stable and reliable protective film on the surface of Al foils, as confirmed by X-ray photoelectron spectroscopy. Thanks to the corrosion suppression of the Al current collector, the Li||LiNi0.8Mn0.1Co0.1O2 (NCM811) cells with PFIL-containing electrolytes exhibit better cycling performance and improved capacity retention. This work proposes an effective strategy for the advancement of high-voltage LIBs and contributes to promoting the widespread use of the sulfone imide-based lithium salts.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136291810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信