用于电池和电催化应用的自插层二维材料的理论证据

Ke Fan, Yuen Hong Tsang, Haitao Huang
{"title":"用于电池和电催化应用的自插层二维材料的理论证据","authors":"Ke Fan, Yuen Hong Tsang, Haitao Huang","doi":"10.20517/energymater.2023.43","DOIUrl":null,"url":null,"abstract":"Covalently bonded two-dimensional (2D) self-intercalated transition metal chalcogenides (i.e., ic-2Ds) have been recently fabricated experimentally, and their properties are highly tunable by stoichiometry and composition. Inspired by this progress, we focus on the applications of ic-2Ds in the field of electrochemistry and systematically investigate their performance in lithium-ion batteries (LIBs) and electrocatalytic hydrogen evolution reactions (HER). By means of density functional theory calculations, seven 3d -metal ic-2Ds are confirmed to be thermodynamically, mechanically, and thermally stable. The metallicity and abundant active sites endow these ic-2Ds with the potential as excellent electrode materials and HER catalysts. Among them, Ti7S12 and V7S12 exhibit the potential as anode materials for LIBs, showing low Li diffusion energy barriers, suitable open-circuit voltages, and ultrahigh capacity of 745.6 and 723.9 mA hg-1, respectively; Cr7S12 and Co7S12 show promises for HER with moderate hydrogen adsorption strengths. This theoretical study provides a new avenue for the application of newly reported ic-2Ds in various electrochemical energy conversion and storage applications.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"8 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications\",\"authors\":\"Ke Fan, Yuen Hong Tsang, Haitao Huang\",\"doi\":\"10.20517/energymater.2023.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covalently bonded two-dimensional (2D) self-intercalated transition metal chalcogenides (i.e., ic-2Ds) have been recently fabricated experimentally, and their properties are highly tunable by stoichiometry and composition. Inspired by this progress, we focus on the applications of ic-2Ds in the field of electrochemistry and systematically investigate their performance in lithium-ion batteries (LIBs) and electrocatalytic hydrogen evolution reactions (HER). By means of density functional theory calculations, seven 3d -metal ic-2Ds are confirmed to be thermodynamically, mechanically, and thermally stable. The metallicity and abundant active sites endow these ic-2Ds with the potential as excellent electrode materials and HER catalysts. Among them, Ti7S12 and V7S12 exhibit the potential as anode materials for LIBs, showing low Li diffusion energy barriers, suitable open-circuit voltages, and ultrahigh capacity of 745.6 and 723.9 mA hg-1, respectively; Cr7S12 and Co7S12 show promises for HER with moderate hydrogen adsorption strengths. This theoretical study provides a new avenue for the application of newly reported ic-2Ds in various electrochemical energy conversion and storage applications.\",\"PeriodicalId\":21863,\"journal\":{\"name\":\"Solar Energy Materials\",\"volume\":\"8 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共价键二维(2D)自插层过渡金属硫族化合物(即ic-2D)最近被实验制备,它们的性质是高度可调的化学计量学和组成。受这一进展的启发,我们专注于ic- 2d在电化学领域的应用,并系统地研究了它们在锂离子电池(LIBs)和电催化析氢反应(HER)中的性能。通过密度泛函理论计算,证实了7种三维金属ic- 2d具有热力学、力学和热稳定性。金属丰度和丰富的活性位点使其成为极好的电极材料和HER催化剂。其中,Ti7S12和V7S12表现出较低的Li扩散能垒、合适的开路电压和超高的容量,分别为745.6和723.9 mA hg-1,具有成为锂离子电池正极材料的潜力;Cr7S12和Co7S12具有中等的氢吸附强度。这一理论研究为新报道的ic- 2d在各种电化学能量转换和存储方面的应用提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical evidence of self-intercalated 2D materials for battery and electrocatalytic applications
Covalently bonded two-dimensional (2D) self-intercalated transition metal chalcogenides (i.e., ic-2Ds) have been recently fabricated experimentally, and their properties are highly tunable by stoichiometry and composition. Inspired by this progress, we focus on the applications of ic-2Ds in the field of electrochemistry and systematically investigate their performance in lithium-ion batteries (LIBs) and electrocatalytic hydrogen evolution reactions (HER). By means of density functional theory calculations, seven 3d -metal ic-2Ds are confirmed to be thermodynamically, mechanically, and thermally stable. The metallicity and abundant active sites endow these ic-2Ds with the potential as excellent electrode materials and HER catalysts. Among them, Ti7S12 and V7S12 exhibit the potential as anode materials for LIBs, showing low Li diffusion energy barriers, suitable open-circuit voltages, and ultrahigh capacity of 745.6 and 723.9 mA hg-1, respectively; Cr7S12 and Co7S12 show promises for HER with moderate hydrogen adsorption strengths. This theoretical study provides a new avenue for the application of newly reported ic-2Ds in various electrochemical energy conversion and storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信