Xinglong Wang, Zonghong Shuang, Xiaolin Liu, Pijiang Yin, Fan Liu, Tianqiaong Lan, Dongju Feng, Jichao Yuan, Fanlei Kong
{"title":"Soil amendment incorporation increases organic carbon by improving soil agglomerate and soil microbial biomass carbon in the alpine grassland","authors":"Xinglong Wang, Zonghong Shuang, Xiaolin Liu, Pijiang Yin, Fan Liu, Tianqiaong Lan, Dongju Feng, Jichao Yuan, Fanlei Kong","doi":"10.1111/sum.13080","DOIUrl":"https://doi.org/10.1111/sum.13080","url":null,"abstract":"Soil amendments aiming to enhance soil quality and bolster carbon sequestration have been extensively investigated. However, the specific impacts of diverse soil amendment types on soil total organic carbon content (TOC), soil aggregate and the growth of ryegrass remain largely unexplored, particularly within the unique context of alpine grassland soils in northwest Sichuan. For this, four soil amendments (CK: no soil amendment, CM: cattle manure 2000 kg ha<jats:sup>−1</jats:sup>, CS: straw amendment 12,000 kg ha<jats:sup>−1</jats:sup> and MS: mushroom substrate 18,000 kg ha<jats:sup>−1</jats:sup>) were applied to alpine grassland soils over a 2‐year duration, conducted in situ during 2017 and 2018, to investigate the influences of these soil amendments on 0–30 cm soil of TOC, total nitrogen (TN), microbial biomass carbon (MBC), soil aggregation, the above‐ground biomass (DMA) and root traits of ryegrass. Compared to CK, the above‐ground biomass exhibited an average of 348.78% in MS, 287.18% in CS and 115.54% in CM, all reaching statistical significance (<jats:italic>p</jats:italic> < .05). In the topsoil (0–10 cm), the large soil aggregate rate (LSAR > 0.25 mm) showed a significant increase in CM, CS and MS, particularly in 2018, compared to CK. Our findings further indicated that the improvement in alpine grassland LSAR > 0.25 mm was correlated with a rise in TOC by over 69.89% and MBC by more than 27.14%. The MS treatment resulted in a significant increase in above‐ground biomass and TRL (total root length), while also increasing the levels of TN, MBC and soil aggregates (0.25 ~ 0.5 mm) within the 0–10 cm soil. A similar result of CS treatment was observed to increase the total chlorophyll content and RD (root diameter), as well as an increase in SWC and TOC levels. The TN, MBC, TOC and LSAR contributed 44.77%, 20.87%, 6.46% and 6.45% for ryegrass growth. The SEM indicated that soil amendments promote the growth of ryegrass by improving soil agglomerate and increasing MBC, TOC and TN. Our analysis revealed that ryegrass biomass production was limited by soil nutrients in the alpine grassland of northwest Sichuan. The study also highlights the potential impact of soil amendments on future management practices, contributing to a more comprehensive understanding of the subject.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"19 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gunasekhar Nachimuthu, Blake Palmer, Andy Hundt, Graeme Schwenke, Hiz Jamali, Oliver Knox, Chris Guppy
{"title":"Soil property differences and irrigated‐cotton lint yield—Cause and effect? An on‐farm case study across three cotton‐growing regions in Australia","authors":"Gunasekhar Nachimuthu, Blake Palmer, Andy Hundt, Graeme Schwenke, Hiz Jamali, Oliver Knox, Chris Guppy","doi":"10.1111/sum.13065","DOIUrl":"https://doi.org/10.1111/sum.13065","url":null,"abstract":"The average lint yield of irrigated cotton in Australia ranges from 2270 to 3700 kg/ha, but yields vary substantially between farms and also between fields on the same farm. Differences in soil properties may cause these yield variations. Identifying which factors are causal and what management can be implemented to mitigate the impacts should help optimize inputs and improve profits. During the 2018–2019 summer cotton‐growing season, a paired‐field comparison approach was used to investigate and improve the understanding of soil property‐induced irrigated cotton yield differences within five farms across three regions of NSW, Australia. The paired fields at each farm recorded an average lint yield difference of >284 kg/ha (measured in 2018–2019 or 5‐year average lint yield). Several soil properties differed between the paired fields at each farm comparison. The soil organic carbon stocks were higher in the higher‐yielding fields at all the farm comparisons and the normalized lint yield percentage was positively correlated with soil organic carbon stocks. Soil sodicity was higher in the lower‐yielding fields at 3 of the 5 comparisons. Results for most soil nutrient tests were above the recommended critical concentrations for Australian cotton production. A stepwise linear regression excluding soil nutrients that were above soil test critical values for crop response and below crop toxicity levels indicated the lint yield was positively correlated with SOC stocks and negatively correlated with sodicity and bulk density. No earthworms were detected during visual soil assessment or soil sampling across all the sites. Visual soil assessment was not a sensitive predictor of cotton crop performance. Comparing soil properties using a paired field approach may assist cotton growers in understanding the factors behind yield differences. A similar strip comparison approach could be adopted for within‐field variability by dividing the fields into discrete performance zones and assessing the soil properties of each zone separately.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"22 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Shi, Zhiyong Zhang, Zi Wang, Yumei Peng, Xiang Wang
{"title":"Soil erosion alters the composition of soil nitrogen and induces nitrogen immobilization along a sloping agricultural landscape","authors":"Jia Shi, Zhiyong Zhang, Zi Wang, Yumei Peng, Xiang Wang","doi":"10.1111/sum.13067","DOIUrl":"https://doi.org/10.1111/sum.13067","url":null,"abstract":"Soil erosion transports and redistributes sediment across the landscape, altering soil organic carbon (SOC) and nitrogen (N) availability and stocks. However, the effect of erosion on soil N remains largely unclear. In this study, SOC, soil total N (TN), mineral N ( and ), dissolved organic N (DON) and total dissolved N (TDN) were evaluated in 100‐cm soil profiles in different sites (including the non‐erosion flat site, erosional site and depositional site) to examine the responses of the concentration and composition of soil N to different erosional intensity. Additionally, N mineralization and microbial biomass nitrogen (MBN) were determined to evaluate the bioavailability of soil N. Our results showed that erosion depleted TN in the erosional sites while enriching it in the depositional site throughout the soil profile. The erosion, rather than the deposition, altered the composition of dissolved N, with TDN (DON and mineral N) dominating deeper soil profiles (40–100 cm, accounting for 18%–50% of TN). The wide soil C:N ratio in the erosional site altered microbial metabolism to mine N to maintain their growth rather than mineralizing organic matter into soil bioavailable forms. This was supported by the net N mineralization (N<jats:italic>m</jats:italic>), which exhibited a significant negative correlation with MBN and soil C:N ratio. The imbalanced loss of SOC and TN caused by the erosion induces soil N limitations. Collectively, our results suggested that erosion decreased TN concentrations and altered the composition of dissolved N, inducing N immobilization and decreasing soil bioavailable N.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"15 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lenka Fišarová, Kateřina Berchová, Martin Lukáč, Luke Beesley, Miroslav Vosátka, Michal Hausenblas, Lukáš Trakal
{"title":"Microgranular biochar improves soil fertility and mycorrhization in crop systems","authors":"Lenka Fišarová, Kateřina Berchová, Martin Lukáč, Luke Beesley, Miroslav Vosátka, Michal Hausenblas, Lukáš Trakal","doi":"10.1111/sum.13068","DOIUrl":"https://doi.org/10.1111/sum.13068","url":null,"abstract":"Intensive agricultural practices have accelerated soil organic carbon mineralization, compromising soil health and function. This study evaluated the efficacy of microgranular biochar (MicroCHAR) and powdered biochar as soil additives enhancing soil function, and pea, maize and wheat growth and yield. We carried out a series of experiments with degraded drought‐prone soils in greenhouse and field conditions, combining biochar addition with arbuscular mycorrhizal fungi (AMF). The combination of amendments variously impacted soil nutrient status; availability of extractable potassium (K) increased in all cases, whilst that of calcium (Ca) was reduced when AMF inoculation was applied alone but not in combination with biochar. MicroCHAR positively affected root biomass and pea P content compared with the control, but biochar did not enhance N or K. Crop yield was not significantly increased by MicroCHAR amendment. MicroCHAR enhanced the mycorrhization rate of crop roots by 260%, an effect seen in the greenhouse and field conditions. This study suggests that credible benefits in some crops can be gained by the application of MicroCHAR to some soils. Observed effects may be soil and crop specific; future study of optimal nutrient and microorganism coatings on microgranular biochar opens exciting avenues for the improvement of crop yields in degraded agricultural soils.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"69 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominique Serrani, Ilario Ferrocino, Cristiana Garofalo, Andrea Osimani, Maria Rita Corvaglia, Vesna Milanović, Lucia Aquilanti, Valeria Cardelli, Andrea Salvucci, Stefania Cocco, Alves Rafael Rogerio Borguete, Giuseppe Corti
{"title":"Soil fungal communities under slash‐and‐burn system in Mozambique: A metataxonomic approach","authors":"Dominique Serrani, Ilario Ferrocino, Cristiana Garofalo, Andrea Osimani, Maria Rita Corvaglia, Vesna Milanović, Lucia Aquilanti, Valeria Cardelli, Andrea Salvucci, Stefania Cocco, Alves Rafael Rogerio Borguete, Giuseppe Corti","doi":"10.1111/sum.13062","DOIUrl":"https://doi.org/10.1111/sum.13062","url":null,"abstract":"This study provides a metataxonomic analysis of the fungal communities in soils under slash‐and‐burn agroforestry system and offers new insights into the relationships between fungal populations and soil physicochemical features such as pH, the particle size distribution, easily oxidizable organic carbon, total nitrogen, available phosphorus, and the mineralogical composition. Soils from three locations in central Mozambique—Vanduzi, Sussundenga, and Macate—that are subjected to slash‐and‐burn were considered to assess the effects of the forest fallow length (temporal variation) and of the land use (charcoal kiln, crop field, and forest; meaning horizontal variation) on the fungal community. The fungi of the genetic horizons (vertical variation) were also considered. Most of the detected fungi were decomposers, antagonists of plant pathogens, and plant‐growth promoters; they were differently distributed in relation to the soil's physicochemical properties and the soil use. The variations in the fungi distribution among the locations and between the horizons were considerable, while there were few variations between the different land‐use types. The limited differences between land uses indicate the inability of a forest fallow period shorter than 50 years to improve soil fertility and induce changes in the fungal community. The pedological approach used to identify and sample soil horizons allowed us to clearly distinguish the fungal community of the A horizons, those richest in organics and nutrients, and that of the Bo horizons, which have poor fertility.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"17 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Fiorentini, Roberto Orsini, Stefano Zenobi, Matteo Francioni, Chiara Rivosecchi, Marco Bianchini, Biagio di Tella, Paride D'Ottavio, Luigi Ledda, Rodolfo Santilocchi, Paola Deligios
{"title":"Soil tillage reduction as a climate change mitigation strategy in Mediterranean cereal‐based cropping systems","authors":"Marco Fiorentini, Roberto Orsini, Stefano Zenobi, Matteo Francioni, Chiara Rivosecchi, Marco Bianchini, Biagio di Tella, Paride D'Ottavio, Luigi Ledda, Rodolfo Santilocchi, Paola Deligios","doi":"10.1111/sum.13050","DOIUrl":"https://doi.org/10.1111/sum.13050","url":null,"abstract":"According to climate change projections, global temperatures would increase by 2°C by 2070, and agriculture is expected to be among the most affected sectors, particularly intensive field crops like cereals. Therefore, researchers need to investigate the most cost‐effective agricultural strategies that can prevent production losses and ensure global food security. This study aimed to identify the limiting factors of durum wheat (<jats:italic>Triticum turgidum</jats:italic> L. subsp. <jats:italic>Durum</jats:italic> (Desf.) Husn.) yield production under Mediterranean conditions. Durum wheat yield data of over 5 years (2017–2022), from a 30‐year rainfed long‐term experiment conducted in the ‘Pasquale Rosati’ experimental farm of the Polytechnic University of Marche in Agugliano, Italy (43°32’ N, 13°22′ E, 100 a.s.l.) on Calcaric Gleyic Cambisols with a silt‐clay texture, were analysed and compared with the recorded thermo‐pluviometric trend. The field trial included two soil managements (no tillage vs. conventional tillage) and three Nitrogen (N) fertilization levels (0, 90, and 180 kg N ha<jats:sup>−1</jats:sup>). The most important driver for durum wheat production was N fertilization. However, in the absence of N fertilization, no tillage showed a higher yield (+1.2 t ha<jats:sup>−1</jats:sup>) than conventional tillage due to the accumulation of organic matter in the soil. When wheat was fertilized with 90 kg N ha<jats:sup>−1</jats:sup>, no tillage resulted in 25% yield more than conventional tillage (+1.2 t ha<jats:sup>−1</jats:sup>), but this occurred only when the increase in temperatures was constant from January until harvest (this happened in 3 of 5 years of monitoring). The non‐constant increase in temperature from January to wheat harvest may hamper crop phenological development and reduce the potential yield. The highest fertilization rate (180 Kg N ha<jats:sup>−1</jats:sup>) resulted in the highest wheat yields regardless of soil management and thermo‐pluviometric trends (5.78 t ha<jats:sup>−1</jats:sup>). After N fertilization and soil management, the minimum and maximum temperature in February and the maximum temperature in April were crucial for durum wheat production under Mediterranean condition. When there is non‐constant increase in temperature from January to wheat harvest no‐tillage should be preferred over conventional tillage because wheat yields did not reduce under no tillage. Thus, agricultural policies that support the switch from conventional tillage to no‐tillage management should be promoted to enable food security in Mediterranean environments.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"53 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141149190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Rayhan Shaheb, Paula A. Misiewicz, Richard J. Godwin, Edward Dickin, David R. White, Tony E. Grift
{"title":"The effect of tire inflation pressure and tillage systems on soil properties, growth and yield of maize and soybean in a silty clay loam soil","authors":"Md Rayhan Shaheb, Paula A. Misiewicz, Richard J. Godwin, Edward Dickin, David R. White, Tony E. Grift","doi":"10.1111/sum.13063","DOIUrl":"https://doi.org/10.1111/sum.13063","url":null,"abstract":"Soil compaction causes adverse effects on soil structure and the performance of crops. There is significant literature supporting the hypothesis that reducing tire inflation pressure can help to minimize compaction, but there is no data on the potential benefits of high flexion tires operating at reduced tire pressures in Midwestern United States agriculture. Hence, a field‐scale study was established in Illinois to determine the potential benefits of high flexion tires at low tire pressure (LTP) in comparison with those operated at standard tire inflation pressure (STP) on soil condition, crop growth and yield of maize and soybean for three tillage systems; deep tillage (450 mm), shallow tillage (100 mm) and no‐till. Two adjacent experiments were established in typical maize/soybean and soybean/maize rotations, respectively. The experiment used a 2 × 3 factorial design with five completely randomized blocks. The results showed that the use of LTP tires resulted in lower soil penetrometer resistance for three tillage systems in 2017 and 2018 in the maize field and 2018 in the soybean field. This improved plant establishment and the number of plants per hectare of maize in both 2016 (*<jats:italic>p</jats:italic> ≤ .05) and 2018 (**<jats:italic>p</jats:italic> ≤ .01) and plant establishment (***<jats:italic>p</jats:italic> ≤ .001) and the number of plants per hectare (***<jats:italic>p</jats:italic> ≤ .001) of soybean in 2018. The penetrometer resistance was higher in the no‐till plots compared to deep and shallow tillage plots in maize and was higher in the deep tillage plots compared to the shallow tillage in the soybean field. The use of LTP tires resulted in an increased grain yield of maize by 4.31% (15.02 Mg ha<jats:sup>−1</jats:sup>) and 2.70% (14.76 Mg ha<jats:sup>−1</jats:sup>) in 2017 (**<jats:italic>p</jats:italic> ≤ .01) and 2018 (*<jats:italic>p</jats:italic> ≤ .05), respectively, and soybean by 3.70% (4.25 Mg ha<jats:sup>−1</jats:sup>) in 2018 (*<jats:italic>p</jats:italic> ≤ .05). The depth of tillage had a significant effect on soybean and maize yields in 2017 (***<jats:italic>p</jats:italic> ≤ .001) and 2018 (***<jats:italic>p</jats:italic> ≤ .001), respectively, with higher yields of both soybean and maize in the deep and shallow tillage compared to no‐till plots. The study concludes that the use of the LTP systems can be a potential means of addressing soil compaction and maintaining soil porosity while increasing crop productivity in silty clay loam soils in Central Illinois.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"8 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernanda Souza Krupek, Michael Kaiser, Daren Redfearn, Andrea Basche
{"title":"Potential gains in soil carbon and nitrogen as a result of systems perenniality: Insights from on‐farm experiments and soil organic matter fractions","authors":"Fernanda Souza Krupek, Michael Kaiser, Daren Redfearn, Andrea Basche","doi":"10.1111/sum.13064","DOIUrl":"https://doi.org/10.1111/sum.13064","url":null,"abstract":"Understanding soil organic matter (SOM) dynamics along gradients of land intensification is critical to guide conservation goals towards improvements in soil carbon (C) and nitrogen (N) storage. In this study, we clarified (a) how the C and N concentrations within SOM fractions of distinct ecological relevance responded to soil management representing a cropland‐grassland gradient and (b) how these operationally defined fractions affected soil physicochemical and biological properties. We compared sites with annual row crop rotations with and without cover crops (i.e. cropland soils) with perennial grassland sites (i.e. reference soil) by sampling near‐surface soils from statewide on‐farm cover crop experiments replicated across four agro‐ecoregions in Midwest USA. Soil management had a significant main effect on C and N content in SOM fractions, but responses were site‐ and fraction‐specific. We found that C content of free particulate organic matter and water‐extractable organic matter (WEOM) of reference soils were 58%–76% and 31%–59% greater than those of the cropland soils in two of the four sites. Differences in N content of WEOM because of soil management were observed in two of the four sites. These reference soils had between 40% and 60% greater N than cropland soils. Additionally, the N content of aggregate occluded POM (o‐POM) of reference soils was three times greater than those of the cropland soils in one of the four sites. Broadly across bulk and SOM fractions, high declines in cropland C and N relative to reference soils were observed in non‐irrigated and strip‐till sites and coarse‐texture soils. Free and o‐POM C and N were strongly associated with aggregate stability, water infiltration and enzyme activity, whereas C and N contents of WEOM and MAOM were correlated with soil's ability to hold onto essential nutrients (e.g. calcium, magnesium, potassium and sodium). Although the potential of cover crops to drive changes on ecologically meaningful SOM fractions is less pronounced in the short (3 year) term, the findings demonstrate the potential of continuous living cover as an approach to agroecosystem design to improve soil functions closely related to SOM characteristics.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"11 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ophélie Sauzet, Alice Johannes, Cédric Deluz, Xavier Dupla, Adrien Matter, Philippe C. Baveye, Pascal Boivin
{"title":"The organic carbon‐to‐clay ratio as an indicator of soil structure vulnerability, a metric focused on the condition of soil structure","authors":"Ophélie Sauzet, Alice Johannes, Cédric Deluz, Xavier Dupla, Adrien Matter, Philippe C. Baveye, Pascal Boivin","doi":"10.1111/sum.13060","DOIUrl":"https://doi.org/10.1111/sum.13060","url":null,"abstract":"The soil organic carbon to clay ratio (SOC:clay) is a metric used in soil quality management. In Switzerland and the United Kingdom, for example, threshold values for SOC:clay ratios have been determined to indicate very good (>1:8) to degraded (<1:13) soil structures. A recent article in Soil Use and Management by Poeplau and Don, however, suggested that this metric is ‘strongly biased and misleading’, based on their observation that German sandy soils and heavy clay soils tend to show very high and very low SOC:clay ratios, respectively. An alternative metric was proposed based on the ratio of actual SOC to expected SOC level for a considered area. We offer a commentary on the proposal, arguing that because soil structure quality is overlooked by the approach, it fails to provide appropriate SOC levels for soil health and could lead to soils with highly depleted SOC being classified ‘good’. The SOC:clay ratio, on the other hand, does address soil structure condition, providing a structure vulnerability index, a key function independent of local soil management conditions. When soils are found to have high structure vulnerability, as indicated by the SOC:clay ratio, the cropping practices at the site should be investigated and ways to increase the SOC content considered. Structure condition threshold values may only need to be reassessed if it is shown that the average structure quality observed is not in conformity with the present thresholds, which would be expected for some soils, such as Andosols.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"36 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jusimara de Andrade Santos, Alceu Pedrotti, Francisco Sandro Rodrigues Holanda, Luiz Diego Vidal Santos, Brisa Marina da Silva Andrade, Renisson Neponuceno de Araújo Filho, Ana Paula Schervinski Villwock, Raimundo Rodrigues Gomes Filho, Soenne França Conceição, Larissa dos Santos Carvalho
{"title":"Impacts of the tillage systems on the production of green corn (Zea mays L.) in long‐term plots in Northeastern Brazil","authors":"Jusimara de Andrade Santos, Alceu Pedrotti, Francisco Sandro Rodrigues Holanda, Luiz Diego Vidal Santos, Brisa Marina da Silva Andrade, Renisson Neponuceno de Araújo Filho, Ana Paula Schervinski Villwock, Raimundo Rodrigues Gomes Filho, Soenne França Conceição, Larissa dos Santos Carvalho","doi":"10.1111/sum.13061","DOIUrl":"https://doi.org/10.1111/sum.13061","url":null,"abstract":"In the current global context of climate change and the increasing demand for sustainability, optimizing agricultural production is very important in order to meet the demands for food and to mitigate environmental impact. To achieve sustainable agricultural production, particularly in regions with tropical soil and climate conditions, is necessary to adopt conservation‐oriented techniques. This includes no‐tillage system, the use of soil‐cover crops, and the application of inoculants. The objective of this research was, at the end of the 22nd cropping season, to assess the influence of soil compaction in the production of green corn (<jats:italic>Zea mays</jats:italic> L.) in a long‐term field experiment. This study was conducted under different soil tillage systems in a Red‐Yellow Ultisol from the Coastal Tablelands of northeastern Brazil. Three soil tillage systems were applied: Conventional Tillage (CT), Minimum Tillage (MT), and No‐tillage (NT). These were combined with four previous crops: cowpea (<jats:italic>Vigna unguiculata</jats:italic>), crotalaria (<jats:italic>Crotalaria juncacea</jats:italic>), pigeon pea (<jats:italic>Cajanus cajan</jats:italic>), and millet (<jats:italic>Pennisetum glaucum</jats:italic>), as well as two levels of nitrogen fertilizer application: (1) 100% of the recommended N dose, and (2) 50% of the recommended N dose plus <jats:italic>Azospirillum brasilense</jats:italic> inoculant. The experimental design consisted of strip plots with subplots divided and randomized within each strip, with three replications. Soil compaction was assessed using parameters of soil density (SD) and soil mechanical resistance to penetration (MRP) in conjunction with moisture content (MC). The principal component analysis (PCA) highlighted that conservation‐oriented systems exhibited greater soil organic carbon (SOC) levels, leading to increased productivity of commercial green corn cobs. The synergistic effect of diversifying previous crops and adopting conservation tillage systems, especially in soils under long‐term tillage, resulted in heightened productivity of commercial green corn ears.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"58 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}