微颗粒生物炭能提高作物系统的土壤肥力和菌根作用

IF 5 3区 农林科学 Q1 SOIL SCIENCE
Lenka Fišarová, Kateřina Berchová, Martin Lukáč, Luke Beesley, Miroslav Vosátka, Michal Hausenblas, Lukáš Trakal
{"title":"微颗粒生物炭能提高作物系统的土壤肥力和菌根作用","authors":"Lenka Fišarová, Kateřina Berchová, Martin Lukáč, Luke Beesley, Miroslav Vosátka, Michal Hausenblas, Lukáš Trakal","doi":"10.1111/sum.13068","DOIUrl":null,"url":null,"abstract":"Intensive agricultural practices have accelerated soil organic carbon mineralization, compromising soil health and function. This study evaluated the efficacy of microgranular biochar (MicroCHAR) and powdered biochar as soil additives enhancing soil function, and pea, maize and wheat growth and yield. We carried out a series of experiments with degraded drought‐prone soils in greenhouse and field conditions, combining biochar addition with arbuscular mycorrhizal fungi (AMF). The combination of amendments variously impacted soil nutrient status; availability of extractable potassium (K) increased in all cases, whilst that of calcium (Ca) was reduced when AMF inoculation was applied alone but not in combination with biochar. MicroCHAR positively affected root biomass and pea P content compared with the control, but biochar did not enhance N or K. Crop yield was not significantly increased by MicroCHAR amendment. MicroCHAR enhanced the mycorrhization rate of crop roots by 260%, an effect seen in the greenhouse and field conditions. This study suggests that credible benefits in some crops can be gained by the application of MicroCHAR to some soils. Observed effects may be soil and crop specific; future study of optimal nutrient and microorganism coatings on microgranular biochar opens exciting avenues for the improvement of crop yields in degraded agricultural soils.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"69 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microgranular biochar improves soil fertility and mycorrhization in crop systems\",\"authors\":\"Lenka Fišarová, Kateřina Berchová, Martin Lukáč, Luke Beesley, Miroslav Vosátka, Michal Hausenblas, Lukáš Trakal\",\"doi\":\"10.1111/sum.13068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensive agricultural practices have accelerated soil organic carbon mineralization, compromising soil health and function. This study evaluated the efficacy of microgranular biochar (MicroCHAR) and powdered biochar as soil additives enhancing soil function, and pea, maize and wheat growth and yield. We carried out a series of experiments with degraded drought‐prone soils in greenhouse and field conditions, combining biochar addition with arbuscular mycorrhizal fungi (AMF). The combination of amendments variously impacted soil nutrient status; availability of extractable potassium (K) increased in all cases, whilst that of calcium (Ca) was reduced when AMF inoculation was applied alone but not in combination with biochar. MicroCHAR positively affected root biomass and pea P content compared with the control, but biochar did not enhance N or K. Crop yield was not significantly increased by MicroCHAR amendment. MicroCHAR enhanced the mycorrhization rate of crop roots by 260%, an effect seen in the greenhouse and field conditions. This study suggests that credible benefits in some crops can be gained by the application of MicroCHAR to some soils. Observed effects may be soil and crop specific; future study of optimal nutrient and microorganism coatings on microgranular biochar opens exciting avenues for the improvement of crop yields in degraded agricultural soils.\",\"PeriodicalId\":21759,\"journal\":{\"name\":\"Soil Use and Management\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Use and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/sum.13068\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Use and Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/sum.13068","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

集约化的农业生产方式加速了土壤有机碳的矿化,损害了土壤的健康和功能。本研究评估了微颗粒生物炭(MicroCHAR)和粉末生物炭作为土壤添加剂对提高土壤功能以及豌豆、玉米和小麦生长和产量的功效。我们在温室和田间条件下对易受干旱影响的退化土壤进行了一系列实验,将生物炭添加剂与丛枝菌根真菌(AMF)相结合。在所有情况下,可提取钾(K)的供应量都有所增加,而在单独施用 AMF 而不是与生物炭结合施用时,钙(Ca)的供应量则有所减少。与对照组相比,MicroCHAR 对根部生物量和豌豆 P 含量有积极影响,但生物炭并未提高 N 或 K 含量。在温室和田间条件下,MicroCHAR 可使作物根部的菌根率提高 260%。这项研究表明,在某些土壤中施用 MicroCHAR 可为某些作物带来可信的益处。观察到的效果可能与土壤和作物有关;未来对微颗粒生物炭最佳养分和微生物涂层的研究为提高退化农田土壤中的作物产量开辟了令人兴奋的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microgranular biochar improves soil fertility and mycorrhization in crop systems
Intensive agricultural practices have accelerated soil organic carbon mineralization, compromising soil health and function. This study evaluated the efficacy of microgranular biochar (MicroCHAR) and powdered biochar as soil additives enhancing soil function, and pea, maize and wheat growth and yield. We carried out a series of experiments with degraded drought‐prone soils in greenhouse and field conditions, combining biochar addition with arbuscular mycorrhizal fungi (AMF). The combination of amendments variously impacted soil nutrient status; availability of extractable potassium (K) increased in all cases, whilst that of calcium (Ca) was reduced when AMF inoculation was applied alone but not in combination with biochar. MicroCHAR positively affected root biomass and pea P content compared with the control, but biochar did not enhance N or K. Crop yield was not significantly increased by MicroCHAR amendment. MicroCHAR enhanced the mycorrhization rate of crop roots by 260%, an effect seen in the greenhouse and field conditions. This study suggests that credible benefits in some crops can be gained by the application of MicroCHAR to some soils. Observed effects may be soil and crop specific; future study of optimal nutrient and microorganism coatings on microgranular biochar opens exciting avenues for the improvement of crop yields in degraded agricultural soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Use and Management
Soil Use and Management 农林科学-土壤科学
CiteScore
7.70
自引率
13.20%
发文量
78
审稿时长
3 months
期刊介绍: Soil Use and Management publishes in soil science, earth and environmental science, agricultural science, and engineering fields. The submitted papers should consider the underlying mechanisms governing the natural and anthropogenic processes which affect soil systems, and should inform policy makers and/or practitioners on the sustainable use and management of soil resources. Interdisciplinary studies, e.g. linking soil with climate change, biodiversity, global health, and the UN’s sustainable development goals, with strong novelty, wide implications, and unexpected outcomes are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信