{"title":"The Study of GPS Vision Navigation System of Multi-stage Real-time Matching Algorithm","authors":"Bo Zhang","doi":"10.14257/IJHIT.2014.7.6.02","DOIUrl":"https://doi.org/10.14257/IJHIT.2014.7.6.02","url":null,"abstract":"There exists the problem of low accuracy, instability and costly mobile communication positioning in GPS navigation. The vision orientation system as an auxiliary navigation method can realize the function of high precision positioning within a large range. This paper introduces a matching constraint and layer-by-layer search structure which is suitable for GPS vision navigation system, and puts forward a feature aided multi-stage matching algorithm. The algorithm firstly makes the match of the more obvious characteristics points, then the matched points information are used to determine the subsequent points general disparity range through the geometric constraints, thus improving the matching speed and accuracy. Using different types of outdoor natural topographic map matching experiments were conducted. Experimental results show that the multi-stage matching algorithm introduced in this paper is better than the basic area matching algorithm in matching accuracy and speed.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88552780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct combustion of biomass","authors":"M. Mandø","doi":"10.1533/9780857097439.2.61","DOIUrl":"https://doi.org/10.1533/9780857097439.2.61","url":null,"abstract":"Abstract: This chapter addresses the large-scale combustion of solid biomass to produce heat and power without co-firing of fossil fuels. It introduces the combustion process with a specific focus on issues important in the combustion of solid biomass such as the condition and chemical properties of the biomass fuel, the increased fouling and corrosion of heating surfaces associated with biomass compared to fossil fuels, as well as ash properties and sintering problems. Finally, specific issues regarding the different firing technologies – grate, fluidized bed and suspension firing – are reviewed.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"72 1","pages":"61-83"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73910746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomass supply chains","authors":"A. Rentizelas","doi":"10.1533/9780857097439.1.9","DOIUrl":"https://doi.org/10.1533/9780857097439.1.9","url":null,"abstract":"The chapter discusses the biomass supply chain, which bears the role of supplying an energy conversion plant with biomass, at the correct quantity, time and quality specifications. The chapter first categorizes the biomass and waste streams and presents analytically the biomass supply chain, discussing its structure and characteristics. It then proceeds in reviewing the latest advances in biomass supply chains. The issue of integrating biomass energy conversion into waste management systems is tackled and the advantages and limitations of using biomass, in supply chain terms, are presented. The chapter concludes with future trends in biomass supply chain and logistics, and proposing sources of further information","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"76 1","pages":"9-35"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80549801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intermediate pyrolysis of biomass","authors":"A. Hornung","doi":"10.1533/9780857097439.2.172","DOIUrl":"https://doi.org/10.1533/9780857097439.2.172","url":null,"abstract":"A comparison of fast and intermediate processes is given. New developments in technology are described for intermediate pyrolysis and an advanced integrative combination of biomass based processes is proposed.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"44 1","pages":"172-186"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86567033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Industrial-scale biomass combustion plants: engineering issues and operation","authors":"H. Widell","doi":"10.1533/9780857097439.3.225","DOIUrl":"https://doi.org/10.1533/9780857097439.3.225","url":null,"abstract":"Abstract: Biomass-fired steam boilers are finding increasing use in industrial-scale applications for both heat and power generation. This chapter compares the main technologies for biomass combustion – spreader stoker, mass burn and biomass bubbling fluidised bed (BFB)/circulating fluidised bed (CFB) – and discusses specific issues to be addressed in the design of biomass-fired steam boiler plants. Examples of recent biomass-to-energy plants are given in order to illustrate how project-specific factors influenced the design. A section is dedicated to non-wood biomass fuels and how their characteristics affect plant design. Conversion of existing coal-fired boilers to biomass firing is also discussed. The final part of the chapter deals with operational issues of biomass-fired plants.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"8 1","pages":"225-277"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89786768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"6 – Biomass gasification","authors":"","doi":"10.1533/9780857097439.2.106","DOIUrl":"https://doi.org/10.1533/9780857097439.2.106","url":null,"abstract":": The gasification of biomass promises plentiful options for efficient feedstock utilization. Often, the main goal is the provision of energy in the form of heat or power (or cooling) by burning the combustible gases. Another goal of biomass gasification is the generation of synthesis gases for further catalytic synthesis into base chemicals or storable energy carriers such as liquid fuels (methanol, mixed alcohols, Fischer–Tropsch liquids and dimethyl ether) or gaseous fuels such as substitute natural gas (SNG) or hydrogen. This chapter describes the fundamentals of gasification, technological developments and future trends for different sizes of plants and gives an overview of the process chains incorporating biomass gasification.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"61 1","pages":"106-129"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73356184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomass co-firing","authors":"C. Yin","doi":"10.1533/9780857097439.2.84","DOIUrl":"https://doi.org/10.1533/9780857097439.2.84","url":null,"abstract":"Abstract: Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40%, and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co-firing. This chapter also briefly introduces indirect co-firing and parallel co-firing and their application status.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"1 1","pages":"84-105"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90900251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biorefineries: increased value from biomass conversion","authors":"L. Lange","doi":"10.1533/9780857097439.3.278","DOIUrl":"https://doi.org/10.1533/9780857097439.3.278","url":null,"abstract":"Abstract: Biomass is much too precious to be used only for the production of heat and electricity. Biomass and biowaste have the potential to be used much higher up in the value chain, e.g. as food ingredients, animal feed, chemical building blocks, materials, fuels, and phosphorous-rich fertilizer. Biorefineries will take over from oil refineries. A biorefinery can use all of the different components in optimized value-adding purposes. They represent the next generation of industrial biotechnology, building on the use of microbes and microbial products to convert biomass. The bioeconomy will be a prominent part of smart and sustainable society in the future.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"69 1","pages":"278-295"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84304645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large-scale biomass combustion plants: an overview","authors":"S. Caillat, E. Vakkilainen","doi":"10.1533/9780857097439.3.189","DOIUrl":"https://doi.org/10.1533/9780857097439.3.189","url":null,"abstract":"Abstract: For a long time biomass was combusted mostly on a small scale. Now the largest biomass boilers are over 500 MWth. This chapter tries to outline the main methods for large-scale biomass combustion. The main boiler types are the grate and bubbling-fluidised bed boilers although circulating-fluidised bed and pulverised firing do play a role. Particular emphasis has been placed on emissions, the effect of fuel quality and operating issues.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"60 1","pages":"189-224"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78258086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomass feedstocks: categorisation and preparation for combustion and gasification","authors":"L. Nikolaisen, P. D. Jensen","doi":"10.1533/9780857097439.1.36","DOIUrl":"https://doi.org/10.1533/9780857097439.1.36","url":null,"abstract":"Abstract: This chapter addresses the categorisation of biomass followed by the preparation and conditioning of biomass before combustion and gasification, which are the main technologies for heat and electricity generation. The physical and chemical characteristics are described for a range of types of biomass, together with selected examples of the common European standards for measuring biomass. The chapter addresses the problems and limitations of selected fuels and considers future trends for fuels such as mixed biopellets and the potential use of marine biomass.","PeriodicalId":21691,"journal":{"name":"Science Technology and Engineering","volume":"14 1","pages":"36-57"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74349355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}