M. Cirasuolo, O. González, P. Rees, I. Bryson, A. Fairley, W. Taylor, J. Afonso, S. Lilly, C. Evans, H. Flores, R. Maiolino, E. Oliva, S. Paltani, L. Vanzi, M. Abreu, J. Amans, D. Atkinson, S. Beard, C. Béchet, A. Belfiore, M. Black, D. Boettger, S. Brierley, D. Buscher, A. Cabral, M. Carollo, W. Cochrane, J. Coelho, M. Colling, R. Conzelmann, F. D'Alessio, Louise Dauvin, G. Davidson, G. Fasola, D. Ferruzzi, M. Fisher, M. Flores, B. Garilli, A. Gargiulo, J. Gaudemard, I. Guinouard, P. Gutierrez, R. Haigron, C. Haniff, D. Ives, O. Iwert, D. King, Suzanne Kovacz, P. Laporte, David W. Lee, G. Causi, Yerko Luco, A. MacLeod, C. Maire, Basile-Thierry Melse, A. Oliveira, L. Origlia, I. Parry, F. Pedichini, R. Piazzesi, F. Reix, M. Rodrigues, F. Rojas, F. Royer, P. Santos, R. Schnell, T. Shen, M. Sordet, J. Strachan, Xaiowei Sun, G. Tait, A. Tozzi, S. Tulloch, Lauren Von Dran, C. Waring, S. Watson, B. Woodward, Yanbin Yang
{"title":"Crescent MOONS: an update on the ongoing construction of the new VLT's multi-object spectrograph","authors":"M. Cirasuolo, O. González, P. Rees, I. Bryson, A. Fairley, W. Taylor, J. Afonso, S. Lilly, C. Evans, H. Flores, R. Maiolino, E. Oliva, S. Paltani, L. Vanzi, M. Abreu, J. Amans, D. Atkinson, S. Beard, C. Béchet, A. Belfiore, M. Black, D. Boettger, S. Brierley, D. Buscher, A. Cabral, M. Carollo, W. Cochrane, J. Coelho, M. Colling, R. Conzelmann, F. D'Alessio, Louise Dauvin, G. Davidson, G. Fasola, D. Ferruzzi, M. Fisher, M. Flores, B. Garilli, A. Gargiulo, J. Gaudemard, I. Guinouard, P. Gutierrez, R. Haigron, C. Haniff, D. Ives, O. Iwert, D. King, Suzanne Kovacz, P. Laporte, David W. Lee, G. Causi, Yerko Luco, A. MacLeod, C. Maire, Basile-Thierry Melse, A. Oliveira, L. Origlia, I. Parry, F. Pedichini, R. Piazzesi, F. Reix, M. Rodrigues, F. Rojas, F. Royer, P. Santos, R. Schnell, T. Shen, M. Sordet, J. Strachan, Xaiowei Sun, G. Tait, A. Tozzi, S. Tulloch, Lauren Von Dran, C. Waring, S. Watson, B. Woodward, Yanbin Yang","doi":"10.1117/12.2561229","DOIUrl":"https://doi.org/10.1117/12.2561229","url":null,"abstract":"The Multi Object Optical and Near-infrared Spectrograph (MOONS) instrument is the next generation multi-object spectrograph for the VLT. This powerful instrument will combine for the first time: the large collecting power of the VLT with a high multipexing capability offered by 1000 optical fibres moved with individual robotic positioners and a novel, very fast spectrograph able to provide both low- and high-resolution spectroscopy simultaneously across the wavelength range 0.64μm - 1.8μm. Such a facility will provide the astronomical community with a powerful, world-leading instrument able to serve a wide range of Galactic, Extragalactic and Cosmological studies. Th final assembly, integration and verification phase of the instrument is now about to start performance testing.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127657554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Biondi, K. Santhakumari, R. Claudi, M. Aliverti, L. Marafatto, D. Greggio, M. Dima, G. Umbriaco, N. Elias-Rosa, S. Campana, P. Schipani, A. Baruffolo, S. Ben-Ami, G. Capasso, R. Cosentino, F. D'Alessio, P. D’Avanzo, O. Hershko, H. Kuncarayakti, M. Landoni, M. Munari, G. Pignata, A. Rubin, S. Scuderi, F. Vitali, D. Young, J. Achr'en, Jos'e Antonio Araiza-Dur'an, I. Arcavi, A. Brucalassi, R. Bruch, E. Cappellaro, M. Colapietro, M. Valle, M. D. Pascale, R. D. Benedetto, S. D'orsi, A. Gal-yam, M. Genoni, M. H. Diaz, J. Kotilainen, G. Causi, S. Mattila, M. Rappaport, Davide Ricci, M. Riva, B. Salasnich, S. Smartt, Ricardo Z'anmar S'anchez, M. Stritzinger, Héctor Ventura
{"title":"The AIV strategy of the common path of Son Of X-Shooter","authors":"F. Biondi, K. Santhakumari, R. Claudi, M. Aliverti, L. Marafatto, D. Greggio, M. Dima, G. Umbriaco, N. Elias-Rosa, S. Campana, P. Schipani, A. Baruffolo, S. Ben-Ami, G. Capasso, R. Cosentino, F. D'Alessio, P. D’Avanzo, O. Hershko, H. Kuncarayakti, M. Landoni, M. Munari, G. Pignata, A. Rubin, S. Scuderi, F. Vitali, D. Young, J. Achr'en, Jos'e Antonio Araiza-Dur'an, I. Arcavi, A. Brucalassi, R. Bruch, E. Cappellaro, M. Colapietro, M. Valle, M. D. Pascale, R. D. Benedetto, S. D'orsi, A. Gal-yam, M. Genoni, M. H. Diaz, J. Kotilainen, G. Causi, S. Mattila, M. Rappaport, Davide Ricci, M. Riva, B. Salasnich, S. Smartt, Ricardo Z'anmar S'anchez, M. Stritzinger, Héctor Ventura","doi":"10.1117/12.2561323","DOIUrl":"https://doi.org/10.1117/12.2561323","url":null,"abstract":"Son Of X-Shooter (SOXS) is a double-armed (UV-VIS, NIR) spectrograph designed to be mounted at the ESO-NTT in La Silla, now in its Assembly Integration and Verification (AIV) phase. The instrument is designed following a modular approach so that each sub-system can be integrated in parallel before their assembly at system level. INAF-Osservatorio Astronomico di Padova will deliver the Common Path (CP) sub-system, which represents the backbone of the entire instrument. In this paper, we describe the foreseen operation for the CP alignment and we report some results already achieved, showing that we envisaged the suitable setup and the strategy to meet the opto-mechanical requirements.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122816834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Ermolli, R. Cirami, G. Calderone, D. Moro, P. Romano, G. Viavattene, I. Coretti, F. Giorgi, V. Baldini, P. D. Marcantonio, L. Giovannelli, S. Guglielmino, M. Murabito, F. Pedichini, R. Piazzesi, M. Aliverti, E. Redaelli, F. Berrilli, F. Zuccarello
{"title":"IBIS2.0: The new Interferometric BIdimensional Spectrometer","authors":"I. Ermolli, R. Cirami, G. Calderone, D. Moro, P. Romano, G. Viavattene, I. Coretti, F. Giorgi, V. Baldini, P. D. Marcantonio, L. Giovannelli, S. Guglielmino, M. Murabito, F. Pedichini, R. Piazzesi, M. Aliverti, E. Redaelli, F. Berrilli, F. Zuccarello","doi":"10.1117/12.2576155","DOIUrl":"https://doi.org/10.1117/12.2576155","url":null,"abstract":"We present the IBIS2.0 project, which aims to upgrade and to install the Interferometric BIdimensional Spectrometer at the solar Vacuum Tower Telescope (Tenerife, Spain) after its disassembling from the Dunn Solar Telescope (New Mexico, USA). The instrument is undergoing a hardware and software revision that will allow it to perform new spectropolarimetric measurements of the solar atmosphere at high spatial, spectral and temporal resolution in coordination with other ground- and space-based instruments. Here we present the new opto-mechanical layout and control system designed for the instrument, and describe future steps.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"797 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123006877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kubo, T. Shimizu, Y. Katsukawa, Y. Kawabata, T. Anan, K. Ichimoto, K. Shinoda, T. Tamura, Y. Nodomi, S. Nakayama, Takuya Yamada, T. Tajima, Shimpei Nakata, Yoshihito Nakajima, Kousei Okutani, A. Feller, J. C. D. T. Iniesta
{"title":"Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE-3: polarization modulation unit","authors":"M. Kubo, T. Shimizu, Y. Katsukawa, Y. Kawabata, T. Anan, K. Ichimoto, K. Shinoda, T. Tamura, Y. Nodomi, S. Nakayama, Takuya Yamada, T. Tajima, Shimpei Nakata, Yoshihito Nakajima, Kousei Okutani, A. Feller, J. C. D. T. Iniesta","doi":"10.1117/12.2560457","DOIUrl":"https://doi.org/10.1117/12.2560457","url":null,"abstract":"Polarization measurements of the solar chromospheric lines at high precision are key to present and future solar telescopes for understanding magnetic field structures in the chromosphere. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for Sunrise III is a spectropolarimeter with a polarimetric precision of 0.03 % (1 σ). The key to high-precision polarization measurements using SCIP is a polarization modulation unit that rotates a waveplate continuously at a constant speed. The rotating mechanism is a DC brushless motor originally developed for a future space mission, and its control logic was originally developed for the sounding rocket experiment CLASP. Because of our requirement on a speed of rotation (0.512 s/rotation) that was 10 times faster than that of CLASP, we optimized the control logic for the required faster rotation. Fast polarization modulation is essential for investigating the fine-scale magnetic field structures related to the dynamical chromospheric phenomena. We have verified that the rotation performance can achieve the polarization precision of 0.03 % (1 σ) required by SCIP and such a significant rotation performance is maintained under thermal vacuum conditions by simulating the environment of the Sunrise III balloon flight. The waveplate was designed as a pair of two birefringent plates made of quartz and sapphire to achieve a constant retardation in a wide wavelength range. We have confirmed that the retardation is almost constant in the 770 nm and 850nm wavelength bands of SCIP under the operational temperature conditions.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132058238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Laurent, D. Boudon, P. Caillier, D. Chapuis, E. Daguisé, K. Disseau, A. Jarno, J. Migniau, A. Pécontal-Rousset, A. Remillieux, J. Richard
{"title":"4MOST low resolution spectrograph MAIT","authors":"F. Laurent, D. Boudon, P. Caillier, D. Chapuis, E. Daguisé, K. Disseau, A. Jarno, J. Migniau, A. Pécontal-Rousset, A. Remillieux, J. Richard","doi":"10.1117/12.2561487","DOIUrl":"https://doi.org/10.1117/12.2561487","url":null,"abstract":"","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132340559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kamizuka, T. Miyata, S. Sako, R. Ohsawa, K. Asano, M. Uchiyama, T. Mori, Yutaka Yoshida, Kengo Tachibana, Tsubasa Michifuji, M. Uchiyama, I. Sakon, T. Onaka, H. Kataza, T. Aoki, M. Doi, B. Hatsukade, N. Kato, K. Kohno, M. Konishi, T. Minezaki, T. Morokuma, Mizuki Numata, K. Motohara, H. Sameshima, T. Soyano, H. Takahashi, T. Tanabé, Masuo Tanaka, K. Tarusawa, S. Koshida, Y. Tamura, Y. Terao, Kosuke Kushibiki, Hiroki Nakamura, Y. Yoshii
{"title":"The University of Tokyo Atacama Observatory 6.5m telescope: On-sky performance evaluations of the mid-infrared instrument MIMIZUKU on the Subaru telescope","authors":"T. Kamizuka, T. Miyata, S. Sako, R. Ohsawa, K. Asano, M. Uchiyama, T. Mori, Yutaka Yoshida, Kengo Tachibana, Tsubasa Michifuji, M. Uchiyama, I. Sakon, T. Onaka, H. Kataza, T. Aoki, M. Doi, B. Hatsukade, N. Kato, K. Kohno, M. Konishi, T. Minezaki, T. Morokuma, Mizuki Numata, K. Motohara, H. Sameshima, T. Soyano, H. Takahashi, T. Tanabé, Masuo Tanaka, K. Tarusawa, S. Koshida, Y. Tamura, Y. Terao, Kosuke Kushibiki, Hiroki Nakamura, Y. Yoshii","doi":"10.1117/12.2560789","DOIUrl":"https://doi.org/10.1117/12.2560789","url":null,"abstract":"The Mid-Infrared Multi-field Imager for gaZing at the UnKnown Universe (MIMIZUKU) is developed as the first-generation mid-infrared instrument for the University of Tokyo Atacama Observatory (TAO) 6.5-m telescope. MIMIZUKU performs medium-band imaging and low-resolution spectroscopy in 2-38 microns and enables highest-spatial-resolution observations in the long-wavelength mid-infrared beyond 25 microns. In addition, MIMIZUKU has a unique opto-mechanical device called ‘Field Stacker’, which enables us to observe a distant (<25 arcminutes) pair of target and reference objects simultaneously and improves accuracy of atmospheric calibration. This function is expected to improve photometric accuracy and quality of spectroscopic data even in the long-wavelength mid-infrared regions, where the atmospheric absorption is severe. In 2018, engineering observations of MIMIZUKU were carried out at the Subaru telescope, and its first-light was successfully achieved. In the engineering observations, the imaging and spectroscopic functions in the mid-infrared wavelengths (7.6-25 microns) were confirmed to be working almost as expected, although the sensitivity is still worse than the background-limited performance by a factor of a few due to high readout noise. The Field Stacker was also confirmed to be working as expected. It is confirmed that the photometric instability can be reduced to a few percent by using Field Stacker even when the atmospheric transmittance varies by 10% in time. It is also confirmed that spectroscopic observations can be performed not only in 10-micron band but also in 20-micron band, where the spectroscopic observations are difficult even at the Mauna Kea site. We report the results of these on-sky performance evaluations.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130898165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Monty, F. Rigaut, R. McDermid, Jesse Cranney, G. Agapito, C. Plantet, D. Greggio, T. Mendel, M. Taheri, D. Vassallo, C. Schwab, G. Fiorentino, G. Bono, D. Haynes
{"title":"The MAVIS Image Simulator: predicting the astrometric performance of MAVIS","authors":"S. Monty, F. Rigaut, R. McDermid, Jesse Cranney, G. Agapito, C. Plantet, D. Greggio, T. Mendel, M. Taheri, D. Vassallo, C. Schwab, G. Fiorentino, G. Bono, D. Haynes","doi":"10.1117/12.2561433","DOIUrl":"https://doi.org/10.1117/12.2561433","url":null,"abstract":"We present initial results from the Multi-conjugate Adaptive-optics Visible Imager-Spectrograph Image Simulator (MAVISIM) to explore the astrometric capabilities of the next generation instrument MAVIS. A core scientific and operational requirement of MAVIS will be to achieve highly accurate differential astrometry, with accuracies on the order that of the extremely large telescopes. To better understand the impact of known and anticipated astrometric error terms, we have created an initial astrometric budget which we present here to motivate the creation of MAVISIM. In this first version of MAVISIM we include three major astrometric error sources; point spread function (PSF) field variability due to high order aberrations, PSF degradation and field variability due to tip-tilt residual error, and field distortions due to non-common path aberrations in the AO module. An overview of MAVISIM is provided along with initial results from a study using MAVISIM to simulate an image of a Milky Way-like globular cluster. Astrometric accuracies are extracted using PSF-fitting photometry with encouraging results that suggest MAVIS will deliver accuracies of 150 µ as down to faint magnitudes.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128467766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Cabral, M. Abreu, J. Coelho, P. Santos, António J. Oliveira, I. Leite, J. Afonso, P. Rees, W. Taylor, S. Watson, David W. Lee, D. Atkinson, O. González, A. Fairley, I. Bryson, I. Guinouard, M. Cirasuolo
{"title":"MOONS, the next ESO VLT’s multi-object spectrograph: the field corrector and the rotating front end","authors":"A. Cabral, M. Abreu, J. Coelho, P. Santos, António J. Oliveira, I. Leite, J. Afonso, P. Rees, W. Taylor, S. Watson, David W. Lee, D. Atkinson, O. González, A. Fairley, I. Bryson, I. Guinouard, M. Cirasuolo","doi":"10.1117/12.2561412","DOIUrl":"https://doi.org/10.1117/12.2561412","url":null,"abstract":"MOONS will be the next Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope, able to simultaneously observe 1000 targets, feeding a set of optical fibres which can be placed at user-specified locations on the Nasmyth focal plane using individual robotic positioners. The sub-fields thus selected are then driven by the fibres into two identical cryogenic spectrographs mounted on the Nasmyth platform of one of the ESO VLT 8 m telescopes. The instrument will provide both medium and high-resolution spectral coverage across the wavelength range of 0.65 μm to 1.8 μm. In this paper we will describe the two components that interface with the telescope: the MOONS Field Corrector (FC) and the Rotating Front End (RFE) Assemblies. The FC optics will correct the off-axis aberrations of the telescope, as well as determining the shape of the focal surface and the pupil location. The RFE assembly consists of a rotating part, which will be mounted on the VLT Nasmyth Rotator, and be connected to the two static Spectrographs via fibre assemblies, and all the sub-systems that give support to the fibre positioning, metrology and calibration units.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127056573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Hughes, Ellen Schallig, I. Lewis, G. Dalton, D. Terrett, D. Abrams, J. Aguerri, G. Bishop, P. Bonifacio, M. Brock, E. Carrasco, K. Middleton, S. Trager, A. Vallenari
{"title":"Final assembly, metrology, and testing of the WEAVE fibre positioner","authors":"Sarah Hughes, Ellen Schallig, I. Lewis, G. Dalton, D. Terrett, D. Abrams, J. Aguerri, G. Bishop, P. Bonifacio, M. Brock, E. Carrasco, K. Middleton, S. Trager, A. Vallenari","doi":"10.1117/12.2560331","DOIUrl":"https://doi.org/10.1117/12.2560331","url":null,"abstract":"WEAVE is the new wide-field spectroscopy facility for the prime focus of the William Herschel Telescope at La Palma, Spain. Its fibre positioner is essential for the accurate placement of the spectrograph's 960 fibre multiplex. We provide an overview of the final assembly and metrology of the fibre positioner, and results of lab commissioning of its robot gantries. A completely new z-gantry for each positioner robot was acquired, with measurements showing a marked improvement in positioning repeatability. We also present the first results of the configuration software testing, and discuss the metrology procedures that must be repeated after the positioner's arrival at the observatory.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126807268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rubin, S. Ben-Ami, O. Hershko, M. Rappaport, A. Gal-yam, R. Bruch, S. Campana, R. Claudi, P. Schipani, M. Aliverti, A. Baruffolo, F. Biondi, G. Capasso, R. Cosentino, F. D'Alessio, P. D’Avanzo, H. Kuncarayakti, M. Landoni, M. Munari, G. Pignata, S. Scuderi, F. Vitali, D. Young, J. Achr'en, J. A. Araiza-Durán, I. Arcavi, A. Brucalassi, E. Cappellaro, M. Colapietro, M. Valle, M. D. Pascale, R. D. Benedetto, S. D'orsi, Thomas Flugel-Paul, M. Genoni, M. Hernandez, J. Kotilainen, G. Causi, S. Mattila, K. Radhakrishnan, Davide Ricci, M. Riva, S. Sadlowski, B. Salasnich, S. Smartt, R. Z. Sánchez, M. Stritzinger, Héctor Ventura
{"title":"Progress on the UV-VIS arm of SOXS","authors":"A. Rubin, S. Ben-Ami, O. Hershko, M. Rappaport, A. Gal-yam, R. Bruch, S. Campana, R. Claudi, P. Schipani, M. Aliverti, A. Baruffolo, F. Biondi, G. Capasso, R. Cosentino, F. D'Alessio, P. D’Avanzo, H. Kuncarayakti, M. Landoni, M. Munari, G. Pignata, S. Scuderi, F. Vitali, D. Young, J. Achr'en, J. A. Araiza-Durán, I. Arcavi, A. Brucalassi, E. Cappellaro, M. Colapietro, M. Valle, M. D. Pascale, R. D. Benedetto, S. D'orsi, Thomas Flugel-Paul, M. Genoni, M. Hernandez, J. Kotilainen, G. Causi, S. Mattila, K. Radhakrishnan, Davide Ricci, M. Riva, S. Sadlowski, B. Salasnich, S. Smartt, R. Z. Sánchez, M. Stritzinger, Héctor Ventura","doi":"10.1117/12.2560644","DOIUrl":"https://doi.org/10.1117/12.2560644","url":null,"abstract":"We present our progress on the UV-VIS arm of Son Of X-Shooter (SOXS), a new spectrograph for the NTT. Our design splits the spectral band into four sub-bands that are imaged onto a single detector. Each band uses an optimized high efficiency grating that operates in 1st order (m=1). In our previous paper we presented the concept and preliminary design. SOXS passed a Final Design Review in July 2018 and is well into the construction phase. Here we present the final design, performances of key manufactured elements, and the progress in the assembly. Based on the as-built elements, the expected throughput of the visual arm will be < 55%. This paper is accompanied by a series of contributions describing the progress made on the SOXS instrument.","PeriodicalId":215000,"journal":{"name":"Ground-based and Airborne Instrumentation for Astronomy VIII","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126820344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}