Robotics and Computer-integrated Manufacturing最新文献

筛选
英文 中文
A high-precision digital twin modeling approach for the serial-parallel hybrid drilling robot in aircraft assembly
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-02-13 DOI: 10.1016/j.rcim.2025.102986
Ruihao Kang , Junshan Hu , Zhanghu Shi , Jiawei Zhang , Zhengping Li , Zhihao Li , Wei Tian
{"title":"A high-precision digital twin modeling approach for the serial-parallel hybrid drilling robot in aircraft assembly","authors":"Ruihao Kang ,&nbsp;Junshan Hu ,&nbsp;Zhanghu Shi ,&nbsp;Jiawei Zhang ,&nbsp;Zhengping Li ,&nbsp;Zhihao Li ,&nbsp;Wei Tian","doi":"10.1016/j.rcim.2025.102986","DOIUrl":"10.1016/j.rcim.2025.102986","url":null,"abstract":"<div><div>Digital twin (DT) models with high-fidelity could map physical entity states precisely, raise the credibility of simulation, enhance the accuracy of processing decisions and improve feedback control precision in intelligent manufacturing, while the modeling process is frequently constrained by the complexity of the physical entity structure. This paper aims to propose a high-precision DT modeling method for aircraft assembly equipment and a drilling robot system with complex structures is taken as the research object. A physical model detailing the structure of the hybrid drilling robot is developed via the combination of Denavit-Hartenberg (D-H) and the virtual mechanism methods. A logical model is established based on the kinematic model of the hybrid drilling robot to express its behavior for drilling. The Levenberg-Marquardt (L-M) least-squares method is applied for calibration of DT model, which reduces the influence of geometric errors by identifying structural parameters in the physical model. The average position and normal errors have decreased to 1/10 and 1/8 respectively compared to before calibration, leading to enhanced accuracy in DT modeling. DT control software is developed to integrate physical model and logical model and is combined with hybrid drilling robot to construct DT system. The drilling quality experiment of DT system for flat and single curvature plates is designed and the results showed that the average positioning errors after the DT model calibrated are reduced by 39.29 % and 49.25 %, respectively. In addition, these drilling quality meets the drilling requirements of large aircraft body fastener assemblies.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102986"},"PeriodicalIF":9.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D curve weld seam path and posture planning based on line laser sensors
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-02-11 DOI: 10.1016/j.rcim.2025.102985
Hui Wang , Youmin Rong , Songming Xiang , Jiajun Xu , Yifan Peng , Yu Huang
{"title":"3D curve weld seam path and posture planning based on line laser sensors","authors":"Hui Wang ,&nbsp;Youmin Rong ,&nbsp;Songming Xiang ,&nbsp;Jiajun Xu ,&nbsp;Yifan Peng ,&nbsp;Yu Huang","doi":"10.1016/j.rcim.2025.102985","DOIUrl":"10.1016/j.rcim.2025.102985","url":null,"abstract":"<div><div>The range of welding scenarios is expanding and becoming more complex in line with the development of manufacturing, which has led to increased demand for automatic and intelligent welding solutions. Line laser sensors are a crucial tool and technology in achieving intelligent welding. However, with the rise in the diversity of weld types and welding parts, the increasingly complex welded components pose challenges to point cloud construction. In contrast, the fixed posture of the welding torch in conventional digital welding makes it difficult to meet the welding needs of 3D curve weld seam. Therefore, this paper proposed a point cloud construction method based on robot pose. Firstly, the multi coordinate system transformation relationship was solved, and precise coordinate transformation between multi frame point clouds was achieved through coordinate transformation matrix, constructing a complex weld seam point cloud model. Furthermore, the point cloud was processed to extract weld seam information with the Ransac algorithm. Based on this, considering the characteristics of robot motion, the welding torch posture is divided into three components: deflection angle, elevation angle, and rotation angle, each of which is calculated separately to achieve welding posture planning. Experimental results have shown that the accuracy of the point cloud construction method proposed in this paper is better than 0.2mm, and the planning errors of the three posture angles are 0.75°, 1.2°, and 0.28°, which aligns well with the requirements of practical welding operations.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102985"},"PeriodicalIF":9.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating large language model and digital twins in the context of industry 5.0: Framework, challenges and opportunities
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-02-10 DOI: 10.1016/j.rcim.2025.102982
Chong Chen , Kuanhong Zhao , Jiewu Leng , Chao Liu , Junming Fan , Pai Zheng
{"title":"Integrating large language model and digital twins in the context of industry 5.0: Framework, challenges and opportunities","authors":"Chong Chen ,&nbsp;Kuanhong Zhao ,&nbsp;Jiewu Leng ,&nbsp;Chao Liu ,&nbsp;Junming Fan ,&nbsp;Pai Zheng","doi":"10.1016/j.rcim.2025.102982","DOIUrl":"10.1016/j.rcim.2025.102982","url":null,"abstract":"<div><div>In Industry 5.0, where human ingenuity is combined with cutting-edge technologies such as artificial intelligence (AI) and robotics to revolutionize manufacturing with a focus on sustainability and human well-being, Digital Twins (DT) have become essential to real-time optimization. However, the complexity of managing DT for large-scale systems poses challenges in terms of data transmission, analytics, and advanced applications, which can be potentially addressed by Large Language Model (LLM). This research firstly performs a literature review to study the roles and functions of LLM in DT in the context of Industry 5.0. Subsequently, we propose a framework named Interactive-DT for LLM-DT integration that reveals the technical pathway for how LLM can be effectively integrated and function within DT environments. Within this framework, the roles and functionalities of LLM at the edge layer, DT layer, and service layer are elaborated upon. Finally, the identified research gaps and prospects for the integration of LLM and DT are outlined and discussed. The research outcomes of this paper highlight the potential of LLM to augment DT capabilities through improved construction and operation, enhanced cloud-edge collaboration, and sophisticated data analytics, ultimately promoting industrial practices that are both efficient and aligned with human-centric and sustainability principles in Industry 5.0.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102982"},"PeriodicalIF":9.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143376499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macro-mini collaborative manipulator system for welding in confined environments
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-02-09 DOI: 10.1016/j.rcim.2025.102975
Erhui Sun , Josue Camacho-Arreguin , Junfu Zhou , Max Liebenschutz-Jones , Tianyi Zeng , Max Keedwell , Dragos Axinte , Andy Norton , Abdelkhalick Mohammad
{"title":"Macro-mini collaborative manipulator system for welding in confined environments","authors":"Erhui Sun ,&nbsp;Josue Camacho-Arreguin ,&nbsp;Junfu Zhou ,&nbsp;Max Liebenschutz-Jones ,&nbsp;Tianyi Zeng ,&nbsp;Max Keedwell ,&nbsp;Dragos Axinte ,&nbsp;Andy Norton ,&nbsp;Abdelkhalick Mohammad","doi":"10.1016/j.rcim.2025.102975","DOIUrl":"10.1016/j.rcim.2025.102975","url":null,"abstract":"<div><div>Welding plays an important role in a wide range of industries, including aviation, aerospace, automobile manufacturing, and nuclear and chemical plants, all of which contain critical industrial assets. However, confined spaces and complex structures in these environments severely restrict the accessibility and functionality of in-situ welding tasks. Therefore, to enable welding operations in constrained spaces, a macro-mini collaborative manipulator system with multiple Degrees of Freedom (multi-DoF) is proposed in this paper. The collaborative system consists of a 6-DoF macro robotic arm and a novel 2-DoF slim mini manipulator. The macro manipulator (i.e., the robotic arm) provides large-scale movement to position the slim mini manipulator within confined environments. The slim mini manipulator, which features a novel serial mechanism, then adjusts and controls the pose of the end-effector (welding torch) to perform welding tasks in spaces that the macro manipulator cannot access. Given the novel design of the mini manipulator, kinematic and Jacobian modelling have been developed to enable intimate and accurate control of the collaborative welding system. The collaboration between the macro and mini manipulators occurs not only for individual movements but also at the level when compensatory movements are performed on each system to enable error compensation for the end-effector (i.e., welding torch). Finally, validation experiments of the collaborative manipulator system have been conducted in confined scenarios to verify its functionality and performance.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102975"},"PeriodicalIF":9.1,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic grinding of complex surfaces with an internal structured compliant tool: Multi-performance optimization in confined spaces
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-01-30 DOI: 10.1016/j.rcim.2025.102974
Mingcong Li , Wenxi Wang , Lai Zou , Chong Lv , Junjie Zhang , Yun Huang
{"title":"Robotic grinding of complex surfaces with an internal structured compliant tool: Multi-performance optimization in confined spaces","authors":"Mingcong Li ,&nbsp;Wenxi Wang ,&nbsp;Lai Zou ,&nbsp;Chong Lv ,&nbsp;Junjie Zhang ,&nbsp;Yun Huang","doi":"10.1016/j.rcim.2025.102974","DOIUrl":"10.1016/j.rcim.2025.102974","url":null,"abstract":"<div><div>Robotic Compliant grinding of complex surfaces with limited space is a crucial and challenging process for the production of the high-performance components such as blisk. The trajectory-varying tool attitude, resulting from the complex structure, introduces an inherent complexity to the contact state for material removal. This, in turn, influences grinding performance and tool life, as well as robot kinematic performance. Thus, a quantitative model between the processing parameters and convoluted material removal process was established. A multi-indicator optimization (MIO) model considering robot kinematics, grit trajectory continuity and tool longevity was developed and solved by the adaptively controlled differential evolutionary (ACDE) algorithm. The results demonstrate that the root mean square error (RMSE) of the predicted contour is 6.45–9.48 μm with different dwell times featuring maximum depths from 47.62 to 158.31 μm. Meanwhile, the RMSE for the three-dimensional morphology with varying tool attitude was less than 12.75 μm. Furthermore, the tool attitudes employing MIO enabled the smoothing grinding of an blisk part featuring a channel as narrow as 23.41 cm, which avoids robot joint mutations and reduces the jerk variation from 0.81 to 0.04 rad/s<sup>3</sup>. The uniform material removal achieved over the entire annular root surface exhibited a mean error of 0.013–0.016 mm for a pre-set removal depth of 0.3 mm.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102974"},"PeriodicalIF":9.1,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Template concept for VR environments: A case study in VR-based safety training for human–robot collaboration
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-01-29 DOI: 10.1016/j.rcim.2025.102973
Morteza Dianatfar , Eeva Järvenpää , Niko Siltala , Minna Lanz
{"title":"Template concept for VR environments: A case study in VR-based safety training for human–robot collaboration","authors":"Morteza Dianatfar ,&nbsp;Eeva Järvenpää ,&nbsp;Niko Siltala ,&nbsp;Minna Lanz","doi":"10.1016/j.rcim.2025.102973","DOIUrl":"10.1016/j.rcim.2025.102973","url":null,"abstract":"<div><div>The industry 4.0 vision has accelerated technology development, particularly in the use of augmented reality (AR) and virtual reality (VR) in industry, such as the metaverse. However, creating VR environments is known to be a laborious task, which means their full potential is not yet fully utilized. There is a need for a reusable VR model that enables faster generation and population of VR environments. This research aims to find solutions for quicker development and deployment of VR environments in an industrial context. Specifically, this paper proposes one solution for creating and modifying these environments more efficiently. The focus of the research, along with the associated industrial use cases, is to develop safety training for human–robot collaboration in final assembly scenarios using VR environments. The paper will introduce a template concept, which includes individual templates and the full architecture to deploy these templates, allowing for faster modification of VR environments to meet specific use case needs. This template concept is developed using two separate use cases from academia and industry.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102973"},"PeriodicalIF":9.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterative offline trajectory correction based on dynamic model for compensating robot-dependent errors in robotic machining
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-01-29 DOI: 10.1016/j.rcim.2025.102960
Valentin Dambly , Bryan Olivier , Edouard Rivière-Lorphèvre , François Ducobu , Olivier Verlinden
{"title":"Iterative offline trajectory correction based on dynamic model for compensating robot-dependent errors in robotic machining","authors":"Valentin Dambly ,&nbsp;Bryan Olivier ,&nbsp;Edouard Rivière-Lorphèvre ,&nbsp;François Ducobu ,&nbsp;Olivier Verlinden","doi":"10.1016/j.rcim.2025.102960","DOIUrl":"10.1016/j.rcim.2025.102960","url":null,"abstract":"<div><div>As manufacturing demands shift towards enhanced part geometries and materials, the need for flexibility in production has driven interest in robotic machining. This fast-growing technology offers advantages like cost-effectiveness, adaptability, and easy deployment, making it suitable for agile production lines. However, robotic machining encounters accuracy challenges due to inherent robot flexibility, causing deviations and vibrations.</div><div>The positioning error along a robotic machining trajectory is composed of two contributions: the steady-state error and the transient. This research addresses these challenges through compensation methods based on a robotic cell equipped with a Stäubli TX200 and its digital shadow. By proposing trajectory corrections based on the results from virtual machining simulator including the robot dynamical model, the study aims to compensate the static and dynamic deviations, responsible for steady-state and transient errors respectively. To achieve this, the trajectory is discretised in elementary sections, modelled with Hermite splines and connected by nodes that are iteratively repositioned in space based on the error estimated from the dynamics simulation and weighted along the tool path.</div><div>Simulations and experiments are carried out in Aluminium 6082 to demonstrate the gain of iterative compensation algorithm. The error reduction encountered in simulation is successfully confirmed in experimental cases, within the repeatability tolerance of the robot, decreasing the steady-state error by 90% and about 60% in transient phases.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102960"},"PeriodicalIF":9.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a trusted synchronized decision-making method for social production logistics systems based on blockchain and digital twin
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-01-28 DOI: 10.1016/j.rcim.2025.102965
Zhongfei Zhang , Ting Qu , George Q. Huang , Yongheng Zhang , Kuo Zhao , Jun Zhang
{"title":"Towards a trusted synchronized decision-making method for social production logistics systems based on blockchain and digital twin","authors":"Zhongfei Zhang ,&nbsp;Ting Qu ,&nbsp;George Q. Huang ,&nbsp;Yongheng Zhang ,&nbsp;Kuo Zhao ,&nbsp;Jun Zhang","doi":"10.1016/j.rcim.2025.102965","DOIUrl":"10.1016/j.rcim.2025.102965","url":null,"abstract":"<div><div>With the growth of personalized demands, manufacturers need to dynamically collaborate with external resources, forming social production logistics systems (SPLS). The complexity and dynamic nature of these systems increase management difficulty, rendering traditional static decision-making methods unsuitable. This study proposes a reliable dynamic collaborative control method for SPLS in discrete manufacturing environments. It aims to provide a secure and controllable collaborative platform for multiple participants, enhancing the system's resilience to disturbances in dynamic environments. A blockchain and digital twin-based trusted synchronized decision-making framework is designed, enabling real-time and reliable acquisition of comprehensive information to support efficient decision-making. Simultaneously, a blockchain smart contract tree-based trusted synchronized decision-making mechanism is proposed to address dynamic disturbances. Utilizing a collaborative optimization algorithm, the \"production-distribution-warehousing\" collaborative decision model is optimally coordinated to achieve efficient resource allocation and process management. Using the home appliance manufacturing industry chain as a case study, results show that the proposed trusted synchronized control method outperforms the non-trusted synchronized control method, resulting in a 35.3 % reduction in total system costs and an enhancement in the collaborative operational efficiency of the production logistics system, and ensures reliable and efficient system operation in a dynamic demand environment. This research provides valuable references for the operational management of future production logistics systems.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102965"},"PeriodicalIF":9.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human-robot and robot-robot sound interaction using a 3-Dimensional Acoustic Ranging (3DAR) in audible and inaudible frequency
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-01-27 DOI: 10.1016/j.rcim.2025.102970
Semin Ahn , Jae-Hoon Kim , Jun Heo , Sung-Hoon Ahn
{"title":"Human-robot and robot-robot sound interaction using a 3-Dimensional Acoustic Ranging (3DAR) in audible and inaudible frequency","authors":"Semin Ahn ,&nbsp;Jae-Hoon Kim ,&nbsp;Jun Heo ,&nbsp;Sung-Hoon Ahn","doi":"10.1016/j.rcim.2025.102970","DOIUrl":"10.1016/j.rcim.2025.102970","url":null,"abstract":"<div><div>Highly reliable sound-based interaction in noisy and dynamic environments is a known challenge with simultaneous Human-Robot Interaction (HRI) and Robot-Robot Interaction (RRI). Here, we introduce 3-dimensional acoustic ranging (3DAR) using the meta-structured single microphone rotation, a compact system with a three-dimensional meta-structure with a phase-cancellation mechanism for enhanced beamforming across audible and inaudible frequencies. Inspired by dolphin communication, the 3DAR employs frequency modulation and separation of sound channels for seamless HRI and RRI. The system achieved over 90 % accuracy in multiple source localization for HRI and 99 % for RRI, even in challenging noise conditions, along with 94 % accuracy in tracking multiple sound sources. Furthermore, real-world tests in a factory demonstrated 95.6 % accuracy in multi-HRI localization and up to 93.8 % accuracy when human speech direction originated from an angle of 120° relative to the system. Real-world application of a collaborative rescue robot confirmed effectiveness of the 3DAR in various applications, highlighting its potential for robust, sound-based collaboration among humans and robots.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102970"},"PeriodicalIF":9.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy consumption modeling based on operation mechanisms of industrial robots
IF 9.1 1区 计算机科学
Robotics and Computer-integrated Manufacturing Pub Date : 2025-01-25 DOI: 10.1016/j.rcim.2025.102971
Zuoxue Wang , Xiaobin Li , Pei Jiang , Xi Vincent Wang , Haitao Yuan
{"title":"Energy consumption modeling based on operation mechanisms of industrial robots","authors":"Zuoxue Wang ,&nbsp;Xiaobin Li ,&nbsp;Pei Jiang ,&nbsp;Xi Vincent Wang ,&nbsp;Haitao Yuan","doi":"10.1016/j.rcim.2025.102971","DOIUrl":"10.1016/j.rcim.2025.102971","url":null,"abstract":"<div><div>Industrial robots are widely used in manufacturing industries due to their high efficiency, flexibility, and ability to respond to diverse needs. However, the large-scale deployment of industrial robots has resulted in a significant increase in energy consumption. Therefore, it is crucial to develop an accurate modeling method for predicting the energy consumption of robotic systems, in order to optimize energy usage and achieve green and sustainable development of the manufacturing industry. Based on the analysis of temporal causal relationships between motion variables and the power of industrial robots, as well as spatial dependence between trajectory points, this study proposes a spatial-based torque prediction network and a temporal–spatial-based energy consumption prediction network by combining layer normalization with bidirectional long short-term memory neural network. This model achieves high-precision predictions of robot motion under variable motion modes, time scaling functions, and load conditions. Experimental results with KUKA KR210 and KR60 robots demonstrate that the model achieves the prediction accuracy of 99.01% for joint torque, 96.61% for total power, and 98.72% for total energy consumption under varying conditions.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102971"},"PeriodicalIF":9.1,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信