Yi Gong , Xiangli Li , Rui Zhou , Miao Li , Sheng Liu
{"title":"A robotized framework for real-time detection and in-situ repair of manufacturing defects in CFRP patch placement","authors":"Yi Gong , Xiangli Li , Rui Zhou , Miao Li , Sheng Liu","doi":"10.1016/j.rcim.2024.102882","DOIUrl":"10.1016/j.rcim.2024.102882","url":null,"abstract":"<div><div>Carbon fiber reinforced polymers (CFRP) have significant applications in aerospace and automotive manufacturing. However, due to the complexity of CFRP structures, manufacturing defects are challenging to avoid and even affect the mechanical properties. Timely detection and repair are essential to ensure product quality. In this study, we propose a robotized framework for real-time detection and in-situ repair of manufacturing defects in CFRP patch placement. First, the influence of three typical defects (delamination, wrinkle and impurity) on mechanical properties is analyzed through numerical analysis. Then, a defect detection model is improved using the channel attention mechanism and decoupling head module, which enhances detection accuracy and the ability to identify small and deep defects. Based on the identification result, a corresponding repair strategy is generated, which considers the effects of force, path, heating and repair modes. The experimental results demonstrate that the tensile stiffness and bending strength of the repaired material are improved by 12.34% and 230.92%, respectively.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102882"},"PeriodicalIF":9.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaohua Zhou , Chin-Yin Chen , Guilin Yang , Chi Zhang
{"title":"Finite-time SMC-based admittance controller design of macro-micro robotic system for complex surface polishing operations","authors":"Yaohua Zhou , Chin-Yin Chen , Guilin Yang , Chi Zhang","doi":"10.1016/j.rcim.2024.102881","DOIUrl":"10.1016/j.rcim.2024.102881","url":null,"abstract":"<div><div>In the field of robotic polishing, achieving uniform material removal typically involves addressing the issue of constant contact force control. However, multi-source external disturbances in the polishing scenarios of complex workpiece surfaces can severely affect the robot’s force control accuracy. To enhance the responsiveness and disturbance rejection capabilities of robots in the compliant polishing process, this paper proposes an adaptive admittance controller with practical finite-time stability. A virtual control input is introduced into the basic admittance control framework in light of the state space theory, aiming to provide flexibility for common adaptive law designs. On this basis, a robust sliding mode control (SMC) algorithm is proposed to suppress external disturbances. The force tracking error is theoretically proven to achieve finite-time convergence when applying the proposed control strategy. Experimental results across various polishing scenarios demonstrate that, compared with the existing admittance control strategies, the proposed method can reduce fluctuations of the polishing force and improve the surface quality, thus verifying its effectiveness.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102881"},"PeriodicalIF":9.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the consistency of path smoothing and trajectory planning in CNC machining: A surface-centric evaluation","authors":"Yunan Wang, Chuxiong Hu, Zeyang Li, Zhirui He, Shiwen Lin, Yushuo Wang, Shize Lin, Jichuan Yu, Zhao Jin, Yu Zhu","doi":"10.1016/j.rcim.2024.102873","DOIUrl":"10.1016/j.rcim.2024.102873","url":null,"abstract":"<div><div>Path smoothing and trajectory planning are universally applied in computer-numerical-control (CNC) machining to avoid natural discontinuity of tangency and curvature at the junctions of G01 blocks. However, most existing methods primarily focus on path-centric indicators that consider the toolpath as a continuous curve, such as contour error and manufacturing efficiency, neglecting the global machining quality and failing to avoid surface inconsistencies, such as single tool marks. This paper establishes a theoretical framework to evaluate the global continuity of toolpaths and trajectories, proposing the consistency as a surface-centric evaluation that considers toolpaths as a surface in CNC machining. In this paper, the consistency is defined as similarity between adjacent toolpaths and trajectories when facing similar input fold-paths in single-point milling. The consistency of four typical existing methods representing a broad category of typical approaches is investigated based on the developed theory. As a theoretically ideal objective, the proposed strong consistency requires a path smoothing method robust to any positional disturbance on the input fold-paths, and this paper points out that few algorithms have achieved strong consistency so far. The proposed weak consistency focusing on the tangential disturbance is practical in the industry. Filtering-based methods without contour error limitations are proved to achieve weak consistency, and smoothing methods with explicit geometric constraints fail to achieve weak consistency. To facilitate evaluation on the consistency of more complex methods, this paper proposes numerical benchmarks and quantitative indicators which can determine whether a method is consistent by numerical experiments. Conducted on a 3-axis machine tool with a ball-end milling cutter, real-world experiments show that inconsistencies in toolpaths’ position and trajectories’ feedrate causes surface inconsistencies like single tool marks. The proposed consistency theory and the carefully designed benchmarks can serve as a novel evaluation for path smoothing and trajectory planning from a global perspective, and it can help to identify areas where inconsistencies may occur in single-point milling.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102873"},"PeriodicalIF":9.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengfei Su , Wei Wang , Kaiyuan Liu , Jin Zhang , Yantao He , Zhimin Wang , Lianyu Zheng
{"title":"Design of a mixed robotic machining system and its application in support removal from metal additive manufactured thin-wall parts","authors":"Pengfei Su , Wei Wang , Kaiyuan Liu , Jin Zhang , Yantao He , Zhimin Wang , Lianyu Zheng","doi":"10.1016/j.rcim.2024.102878","DOIUrl":"10.1016/j.rcim.2024.102878","url":null,"abstract":"<div><p>Robotic machining could provide a solution for removing supports from metal additive manufactured workpieces, replacing labor-intensive work. However, the robot’s intrinsic weaknesses of low positioning accuracy and structural rigidity primarily restrict its applications. Improving the accuracy of robotic machining remains an unresolved issue. A mixed solution is proposed, in which a portable CNC machine with the capability of visual feature recognition is equipped with a universal industrial robot. The robot implements positioning motions in a large space, while the portable CNC fulfills accurate machining motions on a local feature of the workpiece. A sizeable weight of the portable CNC exerts a moderate load on the industrial robot’s joints, increasing joint stiffness. The mixed machining system exhibits high accuracy and stiffness when milling a steel/titanium alloy workpiece, achieving tolerances up to ±0.04 mm on a 60×80 mm U-shaped path without exciting any structural vibration modes. When the dimension of the workpiece exceeds the machining range of the portable CNC, a combined algorithm of coarse-fine registration based visual identification and robot error compensation is designed to align the spatial coordinates of the machining motion with that of the positioning motion, thereby extending the machining range with high accuracy. Through the proposed mixed robot machining method, experiments of doubling the machining range have been done to verify that the mixed machining robotic system is able to slot a 550 mm-long path with accuracy of ±0.1 mm. Furthermore, the mixed robotic machining system is applied to recognize and remove multiple supports of lattices, grids and ribs from a titanium-alloy additive manufactured thin-wall workpiece with high accuracy and high efficiency.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102878"},"PeriodicalIF":9.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haibo Liu , Tian Lan , Te Li , Jingchao Ai , Yongqing Wang , Yu Sun
{"title":"Accurate backside boundary recognition of girth weld beads","authors":"Haibo Liu , Tian Lan , Te Li , Jingchao Ai , Yongqing Wang , Yu Sun","doi":"10.1016/j.rcim.2024.102880","DOIUrl":"10.1016/j.rcim.2024.102880","url":null,"abstract":"<div><p>Visual recognition of weld beads is essential for post-weld robotic grinding. The recognition of thin-walled weld bead boundary, especially the backside boundary, remains challenging due to the diverse features such as debris, misalignment, and deformation. Based on point cloud from a laser scanner, we present a robust and accurate backside boundary recognition method for girth weld beads of thin-walled pipes. A boundary point extraction method is designed based on an adaptive sliding window model. Without prior morphology features, the influence of misalignment and deformation on the accuracy of boundary point recognition is greatly reduced by the local model matching strategy. Leveraging the correlation among overall weld bead features, an anomalous boundary point recognition and correction method based on DBSCAN clustering is proposed to further enhance robustness. A series of validation experiments were conducted by the obtained backside point cloud data inside a girth weld pipe, and our proposed method showed a high accuracy and a high robustness to misalignment, deformation and debris features.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102880"},"PeriodicalIF":9.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiachen Liang , Shusheng Zhang , Changhong Xu , Yajun Zhang , Rui Huang , Hang Zhang , Zhen Wang
{"title":"A method for detecting process design intent in the process route based on heterogeneous graph convolutional networks","authors":"Jiachen Liang , Shusheng Zhang , Changhong Xu , Yajun Zhang , Rui Huang , Hang Zhang , Zhen Wang","doi":"10.1016/j.rcim.2024.102872","DOIUrl":"10.1016/j.rcim.2024.102872","url":null,"abstract":"<div><p>The process design intent is the concentration of the technologists’ design cognitive process which contains the experiential knowledge and skills. It can reproduce technologists’ design thinking process in process design and provides guidance and interpretability for the generation of process results. The machining process route, as a core component of a part's entire manufacturing process, contains substantial process design intent. If the process design intent embedded in the existing process route can be explicitly identified, subsequent technologists will be able to learn and understand the original designers’ thinking, methodologies, and intents. This understanding enables effective reuse of design thinking and logic in the process design of new parts, rather than merely reusing data. It can also promote the propagation of the expertise and skills inherent in the process design intent. However, existing research on process design intent lacks a detailed explanation of its formation and specific structure from the design cognition perspective, making it challenging to effectively predict the process design intent containing interpretable empirical knowledge in the process route. To address this issue, this paper provides a method for predicting process design intent in the process route using heterogeneous graph convolutional networks. First, the heterogeneous graph is used to represent the parts and their associated process routes in the dataset. The nodes in the graph are then labeled based on accumulated and summarized process design intent. The prediction of process design intent in the process route is then converted into a node classification issue with heterogeneous graphs. A node classification network model is constructed using a heterogeneous graph convolutional network where the input is the created heterogeneous graph, and the output is the design reason contained in the machining feature and the intent cognition embedded in the working step, both of which are part of the process design intent. After training, the proposed model accurately predicted design reasons for machining features and intent cognitions for working steps (95.13 % and 96.85 %, respectively). Finally, examples of actual process routes are analyzed to verify the method's feasibility and reliability. The method given in this article can help technologists gain a deeper understanding of process route generation, hence improving their process design capabilities.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102872"},"PeriodicalIF":9.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A corrective shared control architecture for human–robot collaborative polishing tasks","authors":"Hao Zhou , Xin Zhang , Jinguo Liu","doi":"10.1016/j.rcim.2024.102876","DOIUrl":"10.1016/j.rcim.2024.102876","url":null,"abstract":"<div><p>Human–robot collaborative polishing can integrate the capabilities of humans and automation to deal with complex polishing tasks. Traditional impedance-control-based human–robot collaboration (HRC) requires operators to physically interact with robots for a good polishing performance, which brings unsafety to operators. To address this issue, a corrective shared control architecture using haptic feedback is proposed in this paper, where the direct force-reflection is used to guarantee the exact human-intention intervention. The proposed control architecture is designed with two layers: (i) the transparency layer in which the direct force-reflection and the human–robot collaborative polishing strategy are implemented; (ii) the passivity layer in which two energy tanks are designed and endowed with master and slave sides and a coupling energy scaling policy is employed to guarantee the passivity of the whole system. Under the proposed architecture, the constant force is adopted to polish normal areas of workpieces, and corrective force based on human intention is applied to deal with unexpected issues. Finally, two groups of experiments are conducted to evaluate the proposed architecture from two aspects: polishing effect and user experience.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102876"},"PeriodicalIF":9.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chungang Zhuang, Haowen Wang, Wanhao Niu, Han Ding
{"title":"A parallel graph network for generating 7-DoF model-free grasps in unstructured scenes using point cloud","authors":"Chungang Zhuang, Haowen Wang, Wanhao Niu, Han Ding","doi":"10.1016/j.rcim.2024.102879","DOIUrl":"10.1016/j.rcim.2024.102879","url":null,"abstract":"<div><p>Generating model-free grasps in complex scattered scenes remains a challenging task. Most current methods adopt PointNet++ as the backbone to extract structural features, while the relative associations of geometry are underexplored, leading to non-optimal grasp prediction results. In this work, a parallelized graph-based pipeline is developed to solve the 7-DoF grasp pose generation problem with point cloud as input. Using the non-textured information of the grasping scene, the proposed pipeline simultaneously performs feature embedding and grasping location focusing in two branches, avoiding the mutual influence of the two learning processes. In the feature learning branch, the geometric features of the whole scene will be fully learned. In the location focusing branch, the high-value grasping locations on the surface of objects will be strategically selected. Using the learned graph features at these locations, the pipeline will eventually output refined grasping directions and widths in conjunction with local spatial features. To strengthen the positional features in the grasping problem, a graph convolution operator based on the positional attention mechanism is designed, and a graph residual network based on this operator is applied in two branches. The above pipeline abstracts the grasping location selection task from the main process of grasp generation, which lowers the learning difficulty while avoiding the performance degradation problem of deep graph networks. The established pipeline is evaluated on the GraspNet-1Billion dataset, demonstrating much better performance and stronger generalization capabilities than the benchmark approach. In robotic bin-picking experiments, the proposed method can effectively understand scattered grasping scenarios and grasp multiple types of unknown objects with a high success rate.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102879"},"PeriodicalIF":9.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Young Woon Choi , Jiho Lee , Yongho Lee , Suhyun Lee , Wonyoung Jeong , Dae Young Lim , Sang Won Lee
{"title":"A vision-guided adaptive and optimized robotic fabric gripping system for garment manufacturing automation","authors":"Young Woon Choi , Jiho Lee , Yongho Lee , Suhyun Lee , Wonyoung Jeong , Dae Young Lim , Sang Won Lee","doi":"10.1016/j.rcim.2024.102874","DOIUrl":"10.1016/j.rcim.2024.102874","url":null,"abstract":"<div><p>Automating fabric manipulation in garment manufacturing remains a challenging task due to the characteristics of limp sheet materials and the diversity of fabrics used. This paper introduces an adaptive and optimized robotic fabric handling system, designed to address these challenges. The system comprises an industrial robot, four needle grippers, and a novel adaptive gripper jig system capable of adjusting the positions of the grippers adaptively to accommodate the shape and material properties of the garment fabric parts. To do this, an in-depth analysis of fabric gripping characteristics—accounting for material properties, gripping position, and fabric deformation—is conducted. A two-stage machine learning model predicting fabric deflection and folding is established from the analyzed data. This model is then incorporated into a vision-guided algorithm that determines the optimal gripping points on garment parts using corresponding CAD data. In addition, the exact position of the target fabric part is swiftly recognized via an algorithm that maps the real-time captured images to the CAD-based shape information. The decision-making information—namely optimal gripping points and garment part position—are subsequently transmitted to the robotic system for automated fabric handling process. The performance of the developed algorithms was quantitatively evaluated, and the integrated robotic system verified to be capable of completing garment manufacturing automation by connecting the processes of automatic fabric cutting and sewing.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102874"},"PeriodicalIF":9.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robotic grinding and polishing of complex aeroengine blades based on new device design and variable impedance control","authors":"Xiangfei Li, Huan Zhao, Haoyuan Zhou, Yuanhao Cai, Yecan Yin, Han Ding","doi":"10.1016/j.rcim.2024.102875","DOIUrl":"10.1016/j.rcim.2024.102875","url":null,"abstract":"<div><p>Owing to the advantages of good flexibility and low cost, robots are gradually replacing manual labor as an effective carrier for the grinding and polishing of aeroengine blades. However, the geometric features of blades are complex and diverse, and the contour accuracy and surface quality requirements are high, making the robotic grinding and polishing of blades still a challenging task. For this reason, this article first designs a new device by integrating different tools, which can achieve full-feature grinding and polishing of blades. Then, in order to improve the accuracy and stability of force tracking during the robotic grinding and polishing processes, a variable impedance control approach with simultaneous changes in stiffness and damping and parameter boundaries is proposed. Finally, the superiority of the proposed variable impedance control method is verified by comparative experiments on surface tracking. In addition, by combining the device with the variable impedance control method in the robotic grinding and polishing experiments of an aeroengine blade, their effectiveness in practical situations is confirmed.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102875"},"PeriodicalIF":9.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}