Remote Sensing in Ecology and Conservation最新文献

筛选
英文 中文
BatNet : a deep learning‐based tool for automated bat species identification from camera trap images BatNet:一个基于深度学习的工具,用于从相机陷阱图像中自动识别蝙蝠物种
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-05-09 DOI: 10.1002/rse2.339
G. Krivek, Alexander Gillert, Martin Harder, M. Fritze, Karina Frankowski, Luisa Timm, Liska Meyer‐Olbersleben, Uwe Freiherr von Lukas, G. Kerth, J. van Schaik
{"title":"BatNet\u0000 : a deep learning‐based tool for automated bat species identification from camera trap images","authors":"G. Krivek, Alexander Gillert, Martin Harder, M. Fritze, Karina Frankowski, Luisa Timm, Liska Meyer‐Olbersleben, Uwe Freiherr von Lukas, G. Kerth, J. van Schaik","doi":"10.1002/rse2.339","DOIUrl":"https://doi.org/10.1002/rse2.339","url":null,"abstract":"","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43714566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reindeer control over shrubification in subarctic wetlands: spatial analysis based on unoccupied aerial vehicle imagery 驯鹿对亚北极湿地灌木化的控制:基于无人飞行器图像的空间分析
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-05-09 DOI: 10.1002/rse2.337
M. Villoslada, H. Ylänne, S. Juutinen, T. Kolari, Pasi Korpelainen, T. Tahvanainen, Franziska Wolff, T. Kumpula
{"title":"Reindeer control over shrubification in subarctic wetlands: spatial analysis based on unoccupied aerial vehicle imagery","authors":"M. Villoslada, H. Ylänne, S. Juutinen, T. Kolari, Pasi Korpelainen, T. Tahvanainen, Franziska Wolff, T. Kumpula","doi":"10.1002/rse2.337","DOIUrl":"https://doi.org/10.1002/rse2.337","url":null,"abstract":"Herbivores can exert a controlling effect on the reproduction and growth of shrubs, thereby counter‐acting the climate‐driven encroachment of shrubs in the Arctic and the potential consequences. This control is particularly evident in the case of abundant herbivores, such as reindeer (Rangifer tarandus tarandus), whose grazing patterns are affected by management. Here, we tested how different reindeer grazing practices on the border between Finland and Norway impact the occurrence of willow (Salix spp.) dominated patches, their above‐ground biomass (AGB) and the ability of willows to form dense thickets. We used a combination of multispectral and RGB imagery obtained from unoccupied aerial vehicles field data and an ensemble of machine‐learning models, which allowed us to model the occurrence of plant community types (Overall accuracy = 0.80), AGB fractions (maximum R2 = 0.90) and topsoil moisture (maximum R2 = 0.89). With this combination of approaches, we show that willows are kept in a browsing‐trap under spring and early summer grazing by reindeer, growing mostly small and scattered in the landscape. In contrast, willows under the winter grazing regime formed dense stands, particularly within riparian areas. We confirm this pattern using a random forest willow habitat distribution model based on topographical parameters. The model shows that willow biomass correlated with parameters of optimal habitat quality only in the winter grazing regime and did not respond to the same parameters under spring and summer grazing of reindeer.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41812984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest edge structure from terrestrial laser scanning to explain bird biophony characteristics from acoustic indices 陆地激光扫描森林边缘结构从声学指标解释鸟类生物声学特征
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-05-07 DOI: 10.1002/rse2.334
Tom E. Verhelst, P. Vangansbeke, P. De Frenne, Barbara D'hont, Q. Ponette, Luc Willems, H. Verbeeck, K. Calders
{"title":"Forest edge structure from terrestrial laser scanning to explain bird biophony characteristics from acoustic indices","authors":"Tom E. Verhelst, P. Vangansbeke, P. De Frenne, Barbara D'hont, Q. Ponette, Luc Willems, H. Verbeeck, K. Calders","doi":"10.1002/rse2.334","DOIUrl":"https://doi.org/10.1002/rse2.334","url":null,"abstract":"Forest edges can be important strongholds for biodiversity and play a crucial role in the protection of forest interiors against edge effects. However, their potential to host biodiversity is dependent on the structure of the forest: Abrupt edges often fail to realise this potential. Yet, methods to accurately characterise and quantify forest edge abruptness are currently lacking. Here, we combine three‐dimensional forest structural data with biodiversity monitoring to assess the influence of forest edge structure on habitat suitability. We derived several structural metrics to determine forest edge abruptness using terrestrial laser scanning and applied these to six forest edge transects in Belgium. The local soundscapes were captured using audio recording devices (Audiomoths) and quantified using acoustic indices (AIs) (metrics on the soundscape characteristics). In each transect, the dawn choruses were recorded over a period of a week, both at the edge and the interior of the forest. No correlation between the AIs and bird species richness was found. There were clear differences between transects in the structural metrics and the recorded soundscapes. Some possible relations between both were found. In this proof of concept, we demonstrated innovative techniques to semi‐automatically classify forest structure and rapidly quantify soundscape characteristics and found a weak effect of forest edge structure on bird biophony.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41886742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Detecting forest canopy gaps using unoccupied aerial vehicle RGB imagery in a species‐rich subtropical forest 在物种丰富的亚热带森林中使用无人驾驶飞行器RGB图像检测林冠间隙
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-05-01 DOI: 10.1002/rse2.336
Jiale Chen, Li Wang, T. Jucker, Hongzhi Da, Zhaochen Zhang, Jianbo Hu, Qingsong Yang, Xihua Wang, Yuchu Qin, Guochun Shen, Li Shu, Jian Zhang
{"title":"Detecting forest canopy gaps using unoccupied aerial vehicle\u0000 RGB\u0000 imagery in a species‐rich subtropical forest","authors":"Jiale Chen, Li Wang, T. Jucker, Hongzhi Da, Zhaochen Zhang, Jianbo Hu, Qingsong Yang, Xihua Wang, Yuchu Qin, Guochun Shen, Li Shu, Jian Zhang","doi":"10.1002/rse2.336","DOIUrl":"https://doi.org/10.1002/rse2.336","url":null,"abstract":"Accurate and efficient detection of canopy gaps is essential for understanding species regeneration and community dynamics in forests. Unoccupied aerial vehicles (UAVs) equipped with visible light (e.g., RGB) cameras have the potential to be one of the most cost‐effective approaches for detecting gaps. However, current gap‐detection methods based on spectral, textural, and/or structural information derived from UAV RGB imagery are unreliable in species‐rich forests with complex terrain due to high spectral complexity and topographic shadowing. Here, we compared the performance of four methods, including pixel‐based supervised classification (PBSC), object‐based classification (OBIA), Canopy Height Model thresholding classification, and HSTAC [a novel method we developed which combines Photographic Height (H), Spectral (S), and Textural (T) information for Automatic Classification (AC)] for characterizing canopy gaps in a 20‐ha permanent subtropical forest plot of eastern China. All classification results were evaluated through a comparison with canopy gaps detected from both field surveys and UAV‐borne LiDAR data. Among the four classification methods, HSTAC performed best in terms of detection efficiency (96% overall accuracy when compared to field data and 85% when compared to the LiDAR data), classification accuracy (3–18% improvement compared to alternative methods), and speed (1–1.5 h faster on the same machine). Of the four topographic factors (elevation, slope, aspect, and convexity), elevation was the one that most affected the accuracy of canopy gap detection. The errors of PBSC classification mainly came from the gaps at low elevations, while OBIA located the position of gaps well but overestimated their sizes. Overall, HSTAC avoids many of the inherent limitations of current state‐of‐the‐art methods and can accurately map canopy gaps in diverse subtropical forests with complex terrain. Our study provides a suitable way for long‐term forest canopy monitoring, real‐time applications, and contributes to a better understanding of forest plant community assembly and succession dynamics.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48966663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multi‐source remote sensing data 利用多源遥感数据表征巴西再生森林的地上生物量和树木覆盖
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-27 DOI: 10.1002/rse2.328
Na Chen, N. Tsendbazar, Daniela Requena Suarez, J. Verbesselt, M. Herold
{"title":"Characterizing aboveground biomass and tree cover of regrowing forests in Brazil using multi‐source remote sensing data","authors":"Na Chen, N. Tsendbazar, Daniela Requena Suarez, J. Verbesselt, M. Herold","doi":"10.1002/rse2.328","DOIUrl":"https://doi.org/10.1002/rse2.328","url":null,"abstract":"Characterization of regrowing forests is vital for understanding forest dynamics to assess the impacts on carbon stocks and to support sustainable forest management. Although remote sensing is a key tool for understanding and monitoring forest dynamics, the use of exclusively remotely sensed data to explore the effects of different variables on regrowing forests across all biomes in Brazil has rarely been investigated. Here, we analyzed how environmental and human factors affect regrowing forests. Based on Brazil's secondary forest age map, 3060 locations disturbed between 1984 and 2018 were sampled, interpreted and analyzed in different biomes. We interpreted the time since disturbance for the sampled pixels in Google Earth Engine. Elevation, slope, climatic water deficit (CWD), the total Nitrogen of soil, cation exchange capacity (CEC) of soil, surrounding tree cover, distance to roads, distance to settlements and fire frequency were analyzed in their importance for predicting aboveground biomass (AGB) and tree cover derived from global forest aboveground biomass map and tree cover map, respectively. Results show that time since disturbance interpreted from satellite time series is the most important predictor for characterizing AGB and tree cover of regrowing forests. AGB increased with increasing time since disturbance, surrounding tree cover, soil total N, slope, distance to roads, distance to settlements and decreased with larger fire frequency, CWD and CEC of soil. Tree cover increased with larger time since disturbance, soil total N, surrounding tree cover, distance to roads, distance to settlements, slope and decreased with increasing elevation and CWD. These results emphasize the importance of remotely sensing products as key opportunities to improve the characterization of forest regrowth and to reduce data gaps and uncertainties related to forest carbon sink estimation. Our results provide a better understanding of regional forest dynamics, toward developing and assessing effective forest‐related restoration and climatic mitigation strategies.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42443337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Challenges and solutions for automated avian recognition in aerial imagery 航空图像中鸟类自动识别的挑战和解决方案
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-26 DOI: 10.1002/rse2.318
Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz
{"title":"Challenges and solutions for automated avian recognition in aerial imagery","authors":"Zhongqi Miao, Stella X. Yu, K. Landolt, M. Koneff, Timothy P. White, Luke J. Fara, E. Hlavacek, B. Pickens, Travis J. Harrison, W. Getz","doi":"10.1002/rse2.318","DOIUrl":"https://doi.org/10.1002/rse2.318","url":null,"abstract":"Remote aerial sensing provides a non‐invasive, large geographical‐scale technology for avian monitoring, but the manual processing of images limits its development and applications. Artificial Intelligence (AI) methods can be used to mitigate this manual image processing requirement. The implementation of AI methods, however, has several challenges: (1) imbalanced (i.e., long‐tailed) data distribution, (2) annotation uncertainty in categorization, and (3) dataset discrepancies across different study sites. Here we use aerial imagery data of waterbirds around Cape Cod and Lake Michigan in the United States to examine how these challenges limit avian recognition performance. We review existing solutions and demonstrate as use cases how methods like Label Distribution Aware Marginal Loss with Deferred Re‐Weighting, hierarchical classification, and FixMatch address the three challenges. We also present a new approach to tackle the annotation uncertainty challenge using a Soft‐fine Pseudo‐Label methodology. Finally, we aim with this paper to increase awareness in the ecological remote sensing community of these challenges and bridge the gap between ecological applications and state‐of‐the‐art computer science, thereby opening new doors to future research.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42799043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fine‐scale landscape phenology revealed through time‐lapse imagery: implications for conservation and management of an endangered migratory herbivore 通过时间推移图像揭示的细尺度景观物候:对濒危迁徙食草动物保护和管理的影响
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-08 DOI: 10.1002/rse2.331
C. John, Jeffrey T. Kerby, T. Stephenson, E. Post
{"title":"Fine‐scale landscape phenology revealed through time‐lapse imagery: implications for conservation and management of an endangered migratory herbivore","authors":"C. John, Jeffrey T. Kerby, T. Stephenson, E. Post","doi":"10.1002/rse2.331","DOIUrl":"https://doi.org/10.1002/rse2.331","url":null,"abstract":"Climate change modifies plant phenology through shifts in seasonal temperature and precipitation. Because the timing of plant growth can limit herbivore population dynamics, climatic alteration of historical patterns of vegetation seasonality may alter population trajectories in such taxa. Thus, sound management decisions may depend on understanding how plant growth varies across a landscape within and among distinct management units or protected areas. Here, we examine spatial variation in the timing of spring plant growth, measured using a network of automated time‐lapse cameras distributed across the range of endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in California, USA. We tracked greenness of individual plants across 2 years to compare spatial patterns of forage phenology in snowy and drought years. Green‐up timing was derived for individual plants across the camera network and compared with local estimates of green‐up timing from satellite data. Satellite‐derived estimates of green‐up timing showed strong correspondence with camera‐derived estimates in areas with dense vegetation cover and weak correspondence in areas with sparse vegetation cover. Daily time‐lapse imagery revealed consistent variation in green‐up timing across elevation, both among latitudinal zones and among individual plant species. Green‐up timing was earlier in 2020 than in 2019, reflecting differences in the end of the snowy season. Because bighorn forage seasonally on alpine species with a brief growing period, spring migration of bighorn may be linked to variation in snowmelt and plant growth across elevational gradients.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44936886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-04-01 DOI: 10.1002/rse2.280
{"title":"Issue Information","authors":"","doi":"10.1002/rse2.280","DOIUrl":"https://doi.org/10.1002/rse2.280","url":null,"abstract":"","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43277761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spaceborne LiDAR for characterizing forest structure across scales in the European Alps 星载激光雷达用于描述欧洲阿尔卑斯山不同尺度的森林结构
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-03-26 DOI: 10.1002/rse2.330
Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf
{"title":"Spaceborne\u0000 LiDAR\u0000 for characterizing forest structure across scales in the European Alps","authors":"Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf","doi":"10.1002/rse2.330","DOIUrl":"https://doi.org/10.1002/rse2.330","url":null,"abstract":"The launch of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission in 2018 opens new opportunities to quantitatively describe forest ecosystems across large scales. While GEDI's height‐related metrics have already been extensively evaluated, the utility of GEDI for assessing the full spectrum of structural variability—particularly in topographically complex terrain—remains incompletely understood. Here, we quantified GEDI's potential to estimate forest structure in mountain landscapes at the plot and landscape level, with a focus on variables of high relevance in ecological applications. We compared five GEDI metrics including relative height percentiles, plant area index, cover and understory cover to airborne laser scanning (ALS) data in two contrasting mountain landscapes in the European Alps. At the plot level, we investigated the impact of leaf phenology and topography on GEDI's accuracy. At the landscape‐scale, we evaluated the ability of GEDIs sample‐based approach to characterize complex mountain landscapes by comparing it to wall‐to‐wall ALS estimates and evaluated the capacity of GEDI to quantify important indicators of ecosystem functions and services (i.e., avalanche protection, habitat provision, carbon storage). Our results revealed only weak to moderate agreement between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI uncertainties increasing with slope. At the landscape‐level, however, the agreement between GEDI and ALS was generally high, with R2 values ranging between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high avalanche protection, habitat provision, and carbon storage, highlighting the potential of GEDI for landscape‐scale analyses in the context of ecosystem dynamics and management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44322751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Combining unmanned aerial vehicles and satellite imagery to quantify areal extent of intertidal brown canopy‐forming macroalgae 结合无人机和卫星图像来量化潮间带棕色树冠形成大型藻类的面积范围
IF 5.5 2区 环境科学与生态学
Remote Sensing in Ecology and Conservation Pub Date : 2023-03-10 DOI: 10.1002/rse2.327
Pippa H. Lewis, B. Roberts, P. Moore, Samuel Pike, A. Scarth, K. Medcalf, I. Cameron
{"title":"Combining unmanned aerial vehicles and satellite imagery to quantify areal extent of intertidal brown canopy‐forming macroalgae","authors":"Pippa H. Lewis, B. Roberts, P. Moore, Samuel Pike, A. Scarth, K. Medcalf, I. Cameron","doi":"10.1002/rse2.327","DOIUrl":"https://doi.org/10.1002/rse2.327","url":null,"abstract":"Brown macroalgae habitats provide a range of ecosystem services, offering coastal protection, supporting and increasing biodiversity, and more recently have been recognized for their potential role as blue carbon habitats. Consequently, accurate areal estimates of these habitats are vitally important. Satellite imagery is often utilized for areal estimates of vegetated habitats due to their ability to capture vast areas but are disadvantaged by their lower resolution. In contrast, imagery collected by unmanned aerial vehicles (UAV) provide high‐resolution datasets but are unable to cover the necessary spatial scale required for calculating areal estimates at regional, national or international scales. This study successfully and accurately corrects the outputs from low‐resolution Sentinel 2 imagery to the standard of high‐resolution UAV imagery by using a novel brown algae index and a simple regression model to provide accurate spatial estimates. This model was applied to rocky shores across Wales, UK to predict a spatial extent of 6.2 km2 for three fucoid macroalgae species; Ascophyllum nodosum, Fucus vesiculosus and F. serratus. The regression model was validated in two ways. First, the data used to create the regression model was split to train and test (50:50) the model, with a root mean square error of ~8%–14%. Secondly, spatial estimates of fucoids in independent aerial imagery were assessed using aerial photography interpretation and compared to that of the regression model (7% difference). The carbon standing stock of fucoids calculated from the spatial estimate (6.2 km2) was found to be significantly lower than that of other marine carbon stores, indicating that fucoids do not significantly contribute as a blue carbon habitat based on biomass alone. This study produces a robust and accurate remote sensing technique to estimate spatial extent of macroalgae at large spatial scales, with possible worldwide applicability.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47364746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信