Yousef Alihosseini, Amir Rezazad Bari, M. Mohammadi
{"title":"Effective Parameters on Increasing Efficiency of Microscale Heat Sinks and Application of Liquid Cooling in Real Life","authors":"Yousef Alihosseini, Amir Rezazad Bari, M. Mohammadi","doi":"10.5772/INTECHOPEN.96467","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96467","url":null,"abstract":"Over the past two decades, electronic technology and miniaturization of electronic devices continue to grow exponentially, and heat dissipation becomes a critical issue for electronic devices due to larger heat generation. So, the need to cool down electronic components has led to the development of multiple cooling methods and microscale heat sinks. This chapter reviewed recent advances in developing an efficient heat sink, including (1) geometry parameters, (2) flow parameters that affect the hydraulic–thermal performance of the heat sink. Also, the main goal of this chapter is to address the current gap between academic research and industry. Furthermore, commercialized electronic cooling devices for various applications are highlighted, and their operating functions are discussed, which has not been presented before.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114731601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introductory Chapter: An Overview of Advances in Microfluidics and Nanofluids Technologies","authors":"S. Murshed","doi":"10.5772/INTECHOPEN.98425","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.98425","url":null,"abstract":"<jats:p />","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121247770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olga P. Fuentes, M. J. Noguera, P. A. Peñaranda, Sergio L. Flores, J. C. Cruz, J. Osma
{"title":"Micromixers for Wastewater Treatment and Their Life Cycle Assessment (LCA)","authors":"Olga P. Fuentes, M. J. Noguera, P. A. Peñaranda, Sergio L. Flores, J. C. Cruz, J. Osma","doi":"10.5772/INTECHOPEN.96822","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96822","url":null,"abstract":"The use of micromixers and catalytically active nanocomposites can be an attractive alternative for the treatment of wastewaters from the textile industry, due to their high activity, low consumption of such nanocomposites, short reaction times and the possibility to work under continuous operation. In this study, 6 different designs of micromixers were modeled and evaluated for the treatment of wastewaters. Velocity profiles, pressure drops, and flows were analyzed and compared for the different devices under the same mixing conditions. In addition, Life cycle assessment (LCA) methodology was applied to determine their performance in terms of environmental impact. Considering the high environmental impact of water sources contaminated by dyes from the textile industry, it becomes critically important to determine when the proposed micromixers are a suitable alternative for their remediation. The LCA and operational efficiency studies results shown here provide a route for the design of novel wastewater treatment systems by coupling low-cost and high-performance micromixers.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127460079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Micro Milling Process for the Rapid Prototyping of Microfluidic Devices","authors":"Muhammad Syafiq Rahim, A. Ehsan","doi":"10.5772/INTECHOPEN.96723","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96723","url":null,"abstract":"Micro milling process has become an attractive method for the rapid prototyping of micro devices. The process is based on subtractive manufacturing method in which materials from a sample are removed selectively. A comprehensive review on the fabrication of circular and rectangular cross-section channels of microfluidic devices using micro milling process is provided this review work. Process and machining parameters such as micro-tools selection, spindle speed, depth of cut, feed rate and strategy for process optimization will be reviewed. A case study on the rapid fabrication of a rectangular cross section channel of a microflow cytometer device with 200 um channel width and 50 um channel depth using CNC micro milling process is provided. The experimental work has produced a low surface roughness micro channel of 20 nm in roughness and demonstrated a microflow cytometer device that can produce hydrodynamic focusing with a focusing width of about 60 um.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130214309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar Thermal Conversion of Plasmonic Nanofluids: Fundamentals and Applications","authors":"Meijie Chen, Xingyu Chen, Dongling Wu","doi":"10.5772/INTECHOPEN.96991","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96991","url":null,"abstract":"Plasmonic nanofluids show great interests for light-matter applications due to the tunable optical properties. By tuning the nanoparticle (NP) parameters (material, shape, and size) or base fluid, plasmonic nanofluids can either absorb or transmit the specific solar spectrum and thus making nanofluids ideal candidates for various solar applications, such as: full spectrum absorption in direct solar absorption collectors, selective absorption or transmittance in solar photovoltaic/thermal (PV/T) systems, and local heating in the solar evaporation or nanobubble generation. In this chapter, we first summarized the preparation methods of plasmonic nanofluids, including the NP preparation based on the top-down and bottom-up, and the nanofluid preparation based on one-step and two-step. And then solar absorption performance of plasmonic nanofluids based on the theoretical and experimental design were discussed to broaden the absorption spectrum of plasmonic nanofluids. At last, solar thermal applications and challenges, including the applications of direct solar absorption collectors, solar PT/V systems, solar distillation, were introduced to promote the development of plasmon nanofluids.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120957620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honggang Zhang, Haoyang Zhang, Tianyu Guan, Xiangyu Wang, Nan Zhang
{"title":"Prototyping and Production of Polymeric Microfluidic Chip","authors":"Honggang Zhang, Haoyang Zhang, Tianyu Guan, Xiangyu Wang, Nan Zhang","doi":"10.5772/INTECHOPEN.96355","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96355","url":null,"abstract":"Microfluidic chips have found many advanced applications in the areas of life science, analytical chemistry, agro-food analysis, and environmental detection. This chapter focuses on investigating the commonly used manufacturing technologies and process chain for the prototyping and mass production of microfluidic chips. The rapid prototyping technologies comprising of PDMS casting, micro machining, and 3D-printing are firstly detailed with some important research findings. Scaling up the production process chain for microfluidic chips are discussed and summarized with the perspectives of tooling technology, replication, and bonding technologies, where the primary working mechanism, technical advantages and limitations of each process method are presented. Finally, conclusions and future perspectives are given. Overall, this chapter demonstrates how to select the processing materials and methods to meet practical requirements for microfluidic chip batch production. It can provide significant guidance for end-user of microfluidic chip applications.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125620246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microfluidic Flow Sensing Approaches","authors":"Liji Huang","doi":"10.5772/INTECHOPEN.96096","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.96096","url":null,"abstract":"Precise flow metrology has an increasing demand in many microfluidic related applications. At the scale and scope of interests, Capillary number instead of Reynold number defines the flow characteristics. The interactions between fluid medium and flow channel surface or the surface tension, cavitation, dissolution, and others play critical roles in microfluidic flow metrology. Conventional flow measurement approaches are not sufficient for solving these issues. This chapter will review the currently available products on the market, their microfluidic flow sensing technologies, the technologies with research and development, the major factors impacting flow metrology, and the prospective sensing approaches for future microfluidic flow sensing.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131321246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanocomposite and Nanofluids: Towards a Sustainable Carbon Capture, Utilization, and Storage","authors":"R. Nguele, K. N. Nono, K. Sasaki","doi":"10.5772/INTECHOPEN.95838","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95838","url":null,"abstract":"Large volumes of unconventional fossil resource are untapped because of the capillary forces, which kept the oil stranded underground. Furthermore, with the increasing demand for sustainable energy and the rising attention geared towards environment protection, there is a vital need to develop materials that bridge the gap between the fossil and renewable resources effectively. An intensive attention has been given to nanomaterials, which from their native features could increase either the energy storage or improve the recovery of fossil energy. The present chapter, therefore, presents the recent advancements of nanotechnology towards the production of unconventional resources and renewable energy. The chapter focuses primarily on nanomaterials applications for both fossils and renewable energies. The chapter is not intended to be an exhaustive representation of nanomaterials, rather it aims at broadening the knowledge on functional nanomaterials for possible engineering applications.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128623176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microfluidics for Time-Resolved Small-Angle X-Ray Scattering","authors":"S. Seibt, T. Ryan","doi":"10.5772/intechopen.95059","DOIUrl":"https://doi.org/10.5772/intechopen.95059","url":null,"abstract":"With the advent of new in situ structural characterisation techniques including X-ray scattering, there has been an increased interest in investigations of the reaction kinetics of nucleation and growth of nanoparticles as well as self-assembly processes. In this chapter, we discuss the applications of microfluidic devices specifically developed for the investigation of time resolved analysis of growth kinetics and structural evolution of nanoparticles and nanofibers. We focus on the design considerations required for spectrometry and SAXS analysis, the advantages of using a combination of SAXS and microfluidics for these measurements, and discuss in an applied fashion the use of these devices for time-resolved research.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133384779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}