{"title":"微流体流量传感方法","authors":"Liji Huang","doi":"10.5772/INTECHOPEN.96096","DOIUrl":null,"url":null,"abstract":"Precise flow metrology has an increasing demand in many microfluidic related applications. At the scale and scope of interests, Capillary number instead of Reynold number defines the flow characteristics. The interactions between fluid medium and flow channel surface or the surface tension, cavitation, dissolution, and others play critical roles in microfluidic flow metrology. Conventional flow measurement approaches are not sufficient for solving these issues. This chapter will review the currently available products on the market, their microfluidic flow sensing technologies, the technologies with research and development, the major factors impacting flow metrology, and the prospective sensing approaches for future microfluidic flow sensing.","PeriodicalId":211039,"journal":{"name":"Advances in Microfluidics and Nanofluids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Microfluidic Flow Sensing Approaches\",\"authors\":\"Liji Huang\",\"doi\":\"10.5772/INTECHOPEN.96096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise flow metrology has an increasing demand in many microfluidic related applications. At the scale and scope of interests, Capillary number instead of Reynold number defines the flow characteristics. The interactions between fluid medium and flow channel surface or the surface tension, cavitation, dissolution, and others play critical roles in microfluidic flow metrology. Conventional flow measurement approaches are not sufficient for solving these issues. This chapter will review the currently available products on the market, their microfluidic flow sensing technologies, the technologies with research and development, the major factors impacting flow metrology, and the prospective sensing approaches for future microfluidic flow sensing.\",\"PeriodicalId\":211039,\"journal\":{\"name\":\"Advances in Microfluidics and Nanofluids\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Microfluidics and Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.96096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microfluidics and Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precise flow metrology has an increasing demand in many microfluidic related applications. At the scale and scope of interests, Capillary number instead of Reynold number defines the flow characteristics. The interactions between fluid medium and flow channel surface or the surface tension, cavitation, dissolution, and others play critical roles in microfluidic flow metrology. Conventional flow measurement approaches are not sufficient for solving these issues. This chapter will review the currently available products on the market, their microfluidic flow sensing technologies, the technologies with research and development, the major factors impacting flow metrology, and the prospective sensing approaches for future microfluidic flow sensing.