{"title":"Experimental Simulation of Molten Corium and Sacrificial Material Interaction in a Scaled Down Core Catcher","authors":"S. Munot","doi":"10.31031/rdms.2021.16.000881","DOIUrl":"https://doi.org/10.31031/rdms.2021.16.000881","url":null,"abstract":"During the severe accident condition involving the core melt, stabilization and cooling the molten corium for long duration is the primary requirement. To address this challenge, core catcher systems are being installed inside the containment of the advanced nuclear reactors. Few ex-vessel core catcher designs incorporate special refractory sacrificial material, which on interaction with molten corium, ablate and reduce the enthalpy of the molten pool. During the interaction, the components of ablated sacrificial material and molten corium are stratified in different layers due to density difference between them, i.e., the low density oxidic components stratify in the top layer while higher density metallic components stratify in the bottom layers in the melt pool. This manuscript presents the material characterization of the stratified melt pool after cooling in an experiment involving interaction of approx. 550kg of molten simulant corium with approx. 150kg of sacrificial material in a scaled down V-shaped ex-vessel core catcher vessel. The cooling strategy in the experiment was similar to prototypic reactor conditions. After cooling and stratification of the melt pool, solid samples from different locations and different heights were collected for SEM-EDS analysis for characterizations. The phenomena of melt inversion were verified in the post-test analysis.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84575696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Properties in Fe-Doped ZnS Thin Films","authors":"Jafarli Rufat","doi":"10.31031/rdms.2021.16.000879","DOIUrl":"https://doi.org/10.31031/rdms.2021.16.000879","url":null,"abstract":"Fe-doped ZnS single-phase thin films showing ferromagnetism have been successfully prepared by Chemical Bath deposition (CBD) on GaAs substrates. Field and temperature dependent magnetization curve indicate that the sample with a Curie temperature Tc as high as 270K. The X-ray diffraction and Atomic Force Microscopy (AFM) reveal that the thin films are well crystallized, Fe ions are substituted for Zn ions in the ZnS matrix and no trace of secondary phases or Fe clusters is detected. The experimental results are explained theoretically by spin-polarized density functional calculations within Generalized-Gradient Approximations (GGA), which indicates the observed high Tc could be mainly ascribed to the p-d exchange coupling between Fe ions and host elements.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80625901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extending the Down Limit of Pore Size of Anodic TiO2 Nanotube Arrays","authors":"Hui Li","doi":"10.31031/rdms.2021.15.000875","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000875","url":null,"abstract":"","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83488463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective Sonodegradation of Methylene Blue (MB) Organic Dye by Mil-88(Fe)/NaY/MnFe2O4 Nanocomposite Sonocatalyst in Aqueous Solution","authors":"M. Sadeghi","doi":"10.31031/rdms.2021.16.000876","DOIUrl":"https://doi.org/10.31031/rdms.2021.16.000876","url":null,"abstract":"This research examined sonocatalytic degradation of Methylene Blue (MB) dye in the presence of MIL-88(Fe)/NaY/MnFe2O4 nanocomposite synthesized using the ultrasound assisted-hydrothermal route. Multiple identification techniques were utilized to investigate the MIL-88(Fe)/NaY/MnFe2O4 nanocomposite sonocatalyst involving FESEM, EDAX, FTIR, XRD and BET. The influences of various parameters like contact time, H2O2 concentration, initial MB concentration and sonocatalyst dosage were precisely studied. About 98.1% of MB dye degradation was achieved under the optimum parameter conditions i.e. at pH of 7, 25mg/L of initial MB concentration, H2O2 concentration of 4mM and 0.5g/L of MIL-88(Fe)/NaY/MnFe2O4 dosage within 60min. The enhancement of sonocatalytic activities can be related to the function of NaY zeolite as trap state for the electron. The scavenger tests outcomes demonstrated that the sono-generated hydroxyl radical (.OH) would play an important role in the MB degradation. Additionally, the MIL-88(Fe)/NaY/MnFe2O4 was quite stable since the efficiency of MB degradation gained in the four run was 93.7%.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82323020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential Sustainable Cement Free Limecrete Based on GGBS & Hydrated Lime as an Alternative for Standardised Prescribed Concrete Applications","authors":"Ash Ahmed","doi":"10.31031/rdms.2021.15.000874","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000874","url":null,"abstract":"A fundamental issue with the active ingredient of concrete, Portland cement, is its energy-intensive manufacturing process, which has led to the cement industry emitting up to 10% of global CO2 levels. To facilitate the reduction in the embodied CO 2 of concrete, the Portland Cement (PC) content has been entirely replaced volumetrically with Hydrated Lime (HL) and ground granulated blast furnace slag (GGBS or SL). GGBS was used to replace hydrated lime content in 10% increments up to 100% GGBS. Analysis of compressive and flexural strength and density testing was performed on samples to investigate the mechanical and physical properties at 7, 28 and 91-day curing ages, whilst flexural testing was conducted at 91 days curing age. Four standard mix ratios, 1:1:3, 1:2:3, 1:1:2 and 2:1 was made for comparison. Two curing conditions were tested at 91-day curing age, these being air-cured and water curing. Results have shown the optimum mix ratio to be 1:1:2 for all mixes. The optimum mix being HL 1:1:2 SL80%, water cured exceeding 25MPa. Throughout the different ratios, it can be concluded that the optimum replacement of GGBS lies between 80-90%; it can also be noted that 100% GGBS content sees a significant drop in compressive and flexural strength, indicating the presence of hydrated lime to be a catalyst for strength gain.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76600986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Freckle Formation Affected by Geometry Features of Single Crystal Superalloy Castings","authors":"D. Ma","doi":"10.31031/rdms.2021.15.000873","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000873","url":null,"abstract":"In comparison to our conventional knowledge, some new features of freckle appearance have been observed, indicating new aspects of freckle formation in the Single Crystal (SC) turbine blades made of superalloys. The casting shape has more significant influence on the freckle formation than the local thermal condition. On the transverse sections of the components with curved contour, freckles were exclusively found on the outward curving surfaces having positive curvature, because the surface effect zones of the neighboring sides are overlapped, providing more favorable convection condition. In comparison, the surfaces with negative curvature remained freckle free, because the surface effect of the neighboring sides is divergent from each other. In the longitudinal direction, the freckle formation can be promoted by contracting contour and suppressed by expanding one, respectively.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84120742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Simplified Approach for Predicting the Time of Consolidation for a Multi-Layered Foundation","authors":"T. Duong","doi":"10.31031/rdms.2021.15.000871","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000871","url":null,"abstract":"This paper deals with a simplified approach of predicting the time of consolidation settlement for a multi-layered foundation using the coupling technique for settlement and unsettlement zones in a specific compressible layer and layers. According to MIT’s lecture, every two layers should combine into one having an equivalent degree of consolidation or having an equivalent thickness of consolidation. From this valuable guideline, several procedures are developed to tackle the specific problem of the settlement of a multi-layered foundation. This study also introduces an idea for coupling the layers, concerning the drainage path during combining every two layers, and some practical points are suggested.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79640482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Electromagnetic Field to Continuous Casting Process of Steel","authors":"H. Harada","doi":"10.31031/rdms.2021.15.000870","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000870","url":null,"abstract":"","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90927944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tailored Synthesis of PS@Ag@TiO2 Core-shell Nanocomposite for Photocatalytic Dye Degradation","authors":"H. Acharya","doi":"10.31031/rdms.2021.15.000866","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000866","url":null,"abstract":"Here, we describe a simple chemical method to synthesize multi component PS@Ag@TiO 2 nanocomposites. The three-step synthetic approach comprises of synthesis of polystyrene (PS) particles, deposition of silver (Ag) nanostructure and coating of titanium dioxide (TiO 2 ) nanoshells. As synthesized materials is characterised by microscopic and spectroscopic techniques. The size of the PS particles is obtained as approx. 200nm in diameter. Ag nanoparticles deposited PS particles are indicated by the surface plasmon band resonance in UV-vis study. To study the potential application, the photocatalytic activity of the PS@Ag@TiO 2 nanocomposites is investigated in Methylene Blue (MB) dye degradation. Nanocomposite provides high photocatalytic degradation with a maximum efficiency of over 90% only in 30min.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82547720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LIDAR Monitoring of Urban Areas","authors":"N. I","doi":"10.31031/rdms.2021.15.000867","DOIUrl":"https://doi.org/10.31031/rdms.2021.15.000867","url":null,"abstract":"The use of a LIDAR to monitor the air pollution makes it possible to control large city areas and detect the spatiotemporal location of Particulate Matter (PM) emissions sources. LIDAR monitoring is a fast method for estimating the pollution, respectively the mass concentration of PM in the atmospheric ground bioaerosol. The careful study of air pollution becomes especially relevant as the PM are potential carriers of solid-state particles dangerous to health and biologically active components. The present report summarizes our experience [1-3] on how the intricate complex of particles with different content and size found in the aerosol might affect the LIDAR monitoring results on the long distance. LIDAR subject of this study is capable of scanning and mapping the horizontal and vertical aerosol distributions and the transport of air masses with a range resolution along the Line of Sight (LOS) of 30m and a beam divergence of ~1 mrad at operational distances of about 25km [3]. The laser emitter (wavelength of 510.6nm) is a pulsed CuBr vapor laser with a repetition rate of 5-10kHz at a 15-ns pulse duration. The receiving system comprises a Carl Zeiss Jena Cassegrain telescope (aperture of 20cm and a focal distance of 1m), a 2-mm-wide focal diaphragm, an interference filter with a 2-nm-wide passband, and an EMI 9789 photo-multiplier tube operating in a photon-counting mode along the entire operational distance. The receiving system is fully computerized for collecting and processing the LIDAR data using a PCO 1001 1024-channel digital interface system for signal strobing and accumulation. The LIDAR monitoring was calibrated based on the data from a sampling absorber located just below the spot of the LIDAR beam with a flow rate of 100m /h, where the particles are collected on a filter with pore size 3µ m (FILTER-LAB, Material MCE, Lot.180509006).","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80143345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}