Progress in molecular and subcellular biology最新文献

筛选
英文 中文
Cancer Biology of the Endoplasmic Reticulum Lectin Chaperones Calreticulin, Calnexin and PDIA3/ERp57. 内质网凝集素伴侣钙网蛋白、钙连蛋白和PDIA3/ERp57的癌症生物学。
Progress in molecular and subcellular biology Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-67696-4_9
Shing Tat Theodore Lam, Chinten James Lim
{"title":"Cancer Biology of the Endoplasmic Reticulum Lectin Chaperones Calreticulin, Calnexin and PDIA3/ERp57.","authors":"Shing Tat Theodore Lam,&nbsp;Chinten James Lim","doi":"10.1007/978-3-030-67696-4_9","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_9","url":null,"abstract":"<p><p>The lectin chaperones calreticulin (CALR) and calnexin (CANX), together with their co-chaperone PDIA3, are increasingly implicated in studies of human cancers in roles that extend beyond their primary function as quality control facilitators of protein folding within the endoplasmic reticulum (ER). Led by the discovery that cell surface CALR functions as an immunogen that promotes anti-tumour immunity, studies have now expanded to include their potential uses as prognostic markers for cancers, and in regulation of oncogenic signaling that regulate such diverse processes including integrin-dependent cell adhesion and migration, proliferation, cell death and chemotherapeutic resistance. The diversity stems from the increasing recognition that these proteins have an equally diverse spectrum of subcellular and extracellular localization, and which are aberrantly expressed in tumour cells. This review describes key foundational discoveries and highlight recent findings that further our understanding of the plethora of activities mediated by CALR, CANX and PDIA3.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"181-196"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans. 秀丽隐杆线虫内质网稳态与应激反应。
Progress in molecular and subcellular biology Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-67696-4_13
Sun-Kyung Lee
{"title":"Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans.","authors":"Sun-Kyung Lee","doi":"10.1007/978-3-030-67696-4_13","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_13","url":null,"abstract":"<p><p>The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"279-303"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Satellite DNA Is an Inseparable Fellow Traveler of B Chromosomes. 卫星DNA是B染色体不可分割的旅伴。
Progress in molecular and subcellular biology Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-74889-0_4
Juan Pedro M Camacho, Francisco J Ruiz-Ruano, María Dolores López-León, Josefa Cabrero
{"title":"Satellite DNA Is an Inseparable Fellow Traveler of B Chromosomes.","authors":"Juan Pedro M Camacho,&nbsp;Francisco J Ruiz-Ruano,&nbsp;María Dolores López-León,&nbsp;Josefa Cabrero","doi":"10.1007/978-3-030-74889-0_4","DOIUrl":"https://doi.org/10.1007/978-3-030-74889-0_4","url":null,"abstract":"<p><p>Next-Generation Sequencing (NGS) has revealed that B chromosomes in several species are enriched in repetitive DNA, mostly satellite DNA (satDNA). This raises the question of whether satDNA is important to B chromosomes for functional reasons or else its abundance on Bs is simply a consequence of properties of B chromosomes such as their dispensability and late replication. Here we review current knowledge in this respect and contextualize it within the frame of practical difficulties to perform this kind of research, the most important being the absence of good full genome sequencing for B-carrying species, which is an essential requisite to ascertain the intragenomic origin of B chromosomes. Our review analysis on 16 species revealed that 38% of them showed B-specific satDNAs whereas only one of them (6%) carried an inter-specifically originated B chromosome. This shows that B-specific satDNA families can eventually evolve in intraspecifically arisen B chromosomes. Finally, the possibility of satDNA accumulation on B chromosomes for functional reasons is exemplified by B chromosomes in rye, as they contain B-specific satDNAs which are transcribed and occupy chromosome locations where they might facilitate the kind of drive shown by this B chromosome during pollen grain mitosis.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"85-102"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
IP3 Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer. 癌症中IP3受体生物学和内质网钙动力学。
Progress in molecular and subcellular biology Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-67696-4_11
Jan B Parys, Geert Bultynck, Tim Vervliet
{"title":"IP<sub>3</sub> Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer.","authors":"Jan B Parys,&nbsp;Geert Bultynck,&nbsp;Tim Vervliet","doi":"10.1007/978-3-030-67696-4_11","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_11","url":null,"abstract":"<p><p>Intracellular Ca<sup>2+</sup> signaling regulates a plethora of cellular functions. A central role in these processes is reserved for the inositol 1,4,5-trisphosphate receptor (IP<sub>3</sub>R), a ubiquitously expressed Ca<sup>2+</sup>-release channel, mainly located in the endoplasmic reticulum (ER). Three IP<sub>3</sub>R isoforms (IP<sub>3</sub>R1, IP<sub>3</sub>R2 and IP<sub>3</sub>R3) exist, encoded respectively by ITPR1, ITPR2 and ITPR3. The proteins encoded by these genes are each about 2700 amino acids long and assemble into large tetrameric channels, which form the target of many regulatory proteins, including several tumor suppressors and oncogenes. Due to the important role of the IP<sub>3</sub>Rs in cell function, their dysregulation is linked to multiple pathologies. In this review, we highlight the complex role of the IP<sub>3</sub>R in cancer, as it participates in most of the so-called \"hallmarks of cancer\". In particular, the IP<sub>3</sub>R directly controls cell death and cell survival decisions via regulation of autophagy and apoptosis. Moreover, the IP<sub>3</sub>R impacts cellular proliferation, migration and invasion. Typical examples of the role of the IP<sub>3</sub>Rs in these various processes are discussed. The relative levels of the IP<sub>3</sub>R isoforms expressed and their subcellular localization, e.g. at the ER-mitochondrial interface, is hereby important. Finally, evidence is provided about how the knowledge of the regulation of the IP<sub>3</sub>R by tumor suppressors and oncogenes can be exploited to develop novel therapeutic approaches to fight cancer.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"215-237"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Physiological Genomics of the Highly Weak-Acid-Tolerant Food Spoilage Yeasts of Zygosaccharomyces bailii sensu lato. 高度耐弱酸食品腐败酵母菌的生理基因组学研究。
Progress in molecular and subcellular biology Pub Date : 2019-01-01 DOI: 10.1007/978-3-030-13035-0_4
Margarida Palma, Isabel Sá-Correia
{"title":"Physiological Genomics of the Highly Weak-Acid-Tolerant Food Spoilage Yeasts of Zygosaccharomyces bailii sensu lato.","authors":"Margarida Palma,&nbsp;Isabel Sá-Correia","doi":"10.1007/978-3-030-13035-0_4","DOIUrl":"https://doi.org/10.1007/978-3-030-13035-0_4","url":null,"abstract":"<p><p>Zygosaccharomyces bailii and two closely related species, Z. parabailii and Z. pseudobailii (\"Z. bailii species complex\", \"Z. bailii sensu lato\" or simply \"Z. bailii (s.l.)\"), are frequently implicated in the spoilage of acidified preserved foods and beverages due to their tolerance to very high concentrations of weak acids used as food preservatives. The recent sequencing and annotation of these species' genomes have clarified their genomic organization and phylogenetic relationship, which includes events of interspecies hybridization. Mechanistic insights into their adaptation and tolerance to weak acids (e.g., acetic and lactic acids) are also being revealed. Moreover, the potential of Z. bailii (s.l.) to be used in industrial biotechnological processes as interesting cell factories for the production of organic acids, reduction of the ethanol content, increase of alcoholic beverages aroma complexity, as well as of genetic source for increasing weak acid resistance in yeast, is currently being considered. This chapter includes taxonomical, ecological, physiological, and biochemical aspects of Z. bailii (s.l.). The focus is on the exploitation of physiological genomics approaches that are providing the indispensable holistic knowledge to guide the effective design of strategies to overcome food spoilage or the rational exploitation of these yeasts as promising cell factories.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"85-109"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37266288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Emerging Mechanisms of Drug Resistance in Candida albicans. 白色念珠菌新出现的耐药机制。
Progress in molecular and subcellular biology Pub Date : 2019-01-01 DOI: 10.1007/978-3-030-13035-0_6
Rajendra Prasad, Remya Nair, Atanu Banerjee
{"title":"Emerging Mechanisms of Drug Resistance in Candida albicans.","authors":"Rajendra Prasad,&nbsp;Remya Nair,&nbsp;Atanu Banerjee","doi":"10.1007/978-3-030-13035-0_6","DOIUrl":"https://doi.org/10.1007/978-3-030-13035-0_6","url":null,"abstract":"<p><p>Drug resistance mechanisms in the commensal human pathogen Candida albicans are continually evolving. Over time, Candida species have implemented diverse strategies to vanquish the effects of various classes of drugs, thereby emanating as a serious life threat. Apart from the repertoire of well-established strategies, which predominantly comprise permeability constraints, increased drug efflux or compromised drug import, alteration, overexpression of drug targets, and chromosome duplication, C. albicans has evolved novel regulatory mechanisms of drug resistance. For instance, recent evidences point to newer circuitry involving different mediators of the stress-responsive machinery of oxidative, osmotic, thermal, nitrosative, and nutrient limitation, which contribute to the emergence of drug resistance. Contemporary advances in genome-wide studies of transcription factors, for instance, the Zn<sub>2</sub>Cys<sub>6</sub> transcription factors, TAC1 (transcriptional activator of CDR) in Candida albicans, or YRR1 in yeast have made it feasible to dissect their involvement for the elucidation of unexplored regulatory network of drug resistance. The coordination of implementers of the conventional and nonconventional drug resistance strategies provides robustness to this commensal human pathogen. In this review, we shed light not only on the established strategies of antifungal resistance but also discuss emerging cellular circuitry governing drug resistance of this human pathogen.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"135-153"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37266290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata. 致病酵母菌对药物和应激的全基因组应答。
Progress in molecular and subcellular biology Pub Date : 2019-01-01 DOI: 10.1007/978-3-030-13035-0_7
Pedro Pais, Mónica Galocha, Miguel Cacho Teixeira
{"title":"Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata.","authors":"Pedro Pais,&nbsp;Mónica Galocha,&nbsp;Miguel Cacho Teixeira","doi":"10.1007/978-3-030-13035-0_7","DOIUrl":"https://doi.org/10.1007/978-3-030-13035-0_7","url":null,"abstract":"<p><p>Candida glabrata is the second most common cause of candidemia worldwide and its prevalence has continuously increased over the last decades. C. glabrata infections are especially worrisome in immunocompromised patients, resulting in serious systemic infections, associated to high mortality rates. Intrinsic resistance to azole antifungals, widely used drugs in the clinical setting, and the ability to efficiently colonize the human host and medical devices, withstanding stress imposed by the immune system, are thought to underlie the emergence of C. glabrata. There is a clear clinical need to understand drug and stress resistance in C. glabrata. The increasing prevalence of multidrug resistant isolates needs to be addressed in order to overcome the decrease of viable therapeutic strategies and find new therapeutic targets. Likewise, the understanding of the mechanisms underlying its impressive ability thrive under oxidative, nitrosative, acidic and metabolic stresses, is crucial to design drugs that target these pathogenesis features. The study of the underlying mechanisms that translate C. glabrata plasticity and its competence to evade the immune system, as well as survive host stresses to establish infection, will benefit from extensive scrutiny. This chapter provides a review on the contribution of genome-wide studies to uncover clinically relevant drug resistance and stress response mechanisms in the human pathogenic yeast C. glabrata.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"155-193"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37266291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Lipidomics Approaches: Applied to the Study of Pathogenesis in Candida Species. 脂质组学方法在念珠菌发病机制研究中的应用。
Progress in molecular and subcellular biology Pub Date : 2019-01-01 DOI: 10.1007/978-3-030-13035-0_8
Ashutosh Singh, Nitesh Kumar Khandelwal, Rajendra Prasad
{"title":"Lipidomics Approaches: Applied to the Study of Pathogenesis in Candida Species.","authors":"Ashutosh Singh,&nbsp;Nitesh Kumar Khandelwal,&nbsp;Rajendra Prasad","doi":"10.1007/978-3-030-13035-0_8","DOIUrl":"https://doi.org/10.1007/978-3-030-13035-0_8","url":null,"abstract":"<p><p>High rate of reported cases of infections in humans caused by fungal pathogens pose serious concern. Potentially these commensal fungi remain harmless to the healthy individuals but can cause severe systemic infection in patients with compromised immune system. Effective drug remedies against these infections are rather limited. Moreover, frequently encountered multidrug resistance poses an additional challenge to search for alternate and novel targets. Notably, imbalances in lipid homeostasis which impact drug susceptibility of Candida albicans cells do provide clues of novel therapeutic strategies. Sphingolipids (SPHs) are unique components of Candida cells, hence are actively exploited as potential drug targets. In addition, recent research has uncovered that several SPH intermediates and of other lipids as well, govern cell signaling and virulence of C. albicans. In this chapter, we highlight the role of lipids in the physiology of Candida, particularly focusing on their roles in the development of drug resistance. Considering the importance of lipids, the article also highlights recent high-throughput analytical tools and methodologies, which are being employed in our understanding of structures, biosynthesis, and roles of lipids in fungal pathogens.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"195-215"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37266292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations. 酵母基因组尺度代谢模型模拟基因型-表型关系。
Progress in molecular and subcellular biology Pub Date : 2019-01-01 DOI: 10.1007/978-3-030-13035-0_5
Sandra Castillo, Kiran Raosaheb Patil, Paula Jouhten
{"title":"Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations.","authors":"Sandra Castillo,&nbsp;Kiran Raosaheb Patil,&nbsp;Paula Jouhten","doi":"10.1007/978-3-030-13035-0_5","DOIUrl":"https://doi.org/10.1007/978-3-030-13035-0_5","url":null,"abstract":"<p><p>Understanding genotype-phenotype dependency is a universal aim for all life sciences. While the complete genotype-phenotype relations remain challenging to resolve, metabolic phenotypes are moving within the reach through genome-scale metabolic model simulations. Genome-scale metabolic models are available for commonly investigated yeasts, such as model eukaryote and domesticated fermentation species Saccharomyces cerevisiae, and automatic reconstruction methods facilitate obtaining models for any sequenced species. The models allow for investigating genotype-phenotype relations through simulations simultaneously considering the effects of nutrient availability, and redox and energy homeostasis in cells. Genome-scale models also offer frameworks for omics data integration to help to uncover how the translation of genotypes to the apparent phenotypes is regulated at different levels. In this chapter, we provide an overview of the yeast genome-scale metabolic models and the simulation approaches for using these models to interrogate genotype-phenotype relations. We review the methodological approaches according to the underlying biological reasoning in order to inspire formulating novel questions and applications that the genome-scale metabolic models could contribute to. Finally, we discuss current challenges and opportunities in the genome-scale metabolic model simulations.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"111-133"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37266289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Yeast at the Forefront of Research on Ageing and Age-Related Diseases. 酵母处于衰老和年龄相关疾病研究的前沿。
Progress in molecular and subcellular biology Pub Date : 2019-01-01 DOI: 10.1007/978-3-030-13035-0_9
Belém Sampaio-Marques, William C Burhans, Paula Ludovico
{"title":"Yeast at the Forefront of Research on Ageing and Age-Related Diseases.","authors":"Belém Sampaio-Marques,&nbsp;William C Burhans,&nbsp;Paula Ludovico","doi":"10.1007/978-3-030-13035-0_9","DOIUrl":"https://doi.org/10.1007/978-3-030-13035-0_9","url":null,"abstract":"<p><p>Ageing is a complex and multifactorial process driven by genetic, environmental and stochastic factors that lead to the progressive decline of biological systems. Mechanisms of ageing have been extensively investigated in various model organisms and systems generating fundamental advances. Notably, studies on yeast ageing models have made numerous and relevant contributions to the progress in the field. Different longevity factors and pathways identified in yeast have then been shown to regulate molecular ageing in invertebrate and mammalian models. Currently the best candidates for anti-ageing drugs such as spermidine and resveratrol or anti-ageing interventions such as caloric restriction were first identified and explored in yeast. Yeasts have also been instrumental as models to study the cellular and molecular effects of proteins associated with age-related diseases such as Parkinson's, Huntington's or Alzheimer's diseases. In this chapter, a review of the advances on ageing and age-related diseases research in yeast models will be made. Particular focus will be placed on key longevity factors, ageing hallmarks and interventions that slow ageing, both yeast-specific and those that seem to be conserved in multicellular organisms. Their impact on the pathogenesis of age-related diseases will be also discussed.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"58 ","pages":"217-242"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-13035-0_9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37266293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信