Structure, Organization, and Evolution of Satellite DNAs: Insights from the Drosophila repleta and D. virilis Species Groups.

Q2 Medicine
Gustavo C S Kuhn, Pedro Heringer, Guilherme Borges Dias
{"title":"Structure, Organization, and Evolution of Satellite DNAs: Insights from the Drosophila repleta and D. virilis Species Groups.","authors":"Gustavo C S Kuhn,&nbsp;Pedro Heringer,&nbsp;Guilherme Borges Dias","doi":"10.1007/978-3-030-74889-0_2","DOIUrl":null,"url":null,"abstract":"<p><p>The fact that satellite DNAs (satDNAs) in eukaryotes are abundant genomic components, can perform functional roles, but can also change rapidly across species while being homogenous within a species, makes them an intriguing and fascinating genomic component to study. It is also becoming clear that satDNAs represent an important piece in genome architecture and that changes in their structure, organization, and abundance can affect the evolution of genomes and species in many ways. Since the discovery of satDNAs more than 50 years ago, species from the Drosophila genus have continuously been used as models to study several aspects of satDNA biology. These studies have been largely concentrated in D. melanogaster and closely related species from the Sophophora subgenus, even though the vast majority of all Drosophila species belong to the Drosophila subgenus. This chapter highlights some studies on the satDNA structure, organization, and evolution in two species groups from the Drosophila subgenus: the repleta and virilis groups. We also discuss and review the classification of other abundant tandem repeats found in these species in the light of the current information available.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"27-56"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-74889-0_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

Abstract

The fact that satellite DNAs (satDNAs) in eukaryotes are abundant genomic components, can perform functional roles, but can also change rapidly across species while being homogenous within a species, makes them an intriguing and fascinating genomic component to study. It is also becoming clear that satDNAs represent an important piece in genome architecture and that changes in their structure, organization, and abundance can affect the evolution of genomes and species in many ways. Since the discovery of satDNAs more than 50 years ago, species from the Drosophila genus have continuously been used as models to study several aspects of satDNA biology. These studies have been largely concentrated in D. melanogaster and closely related species from the Sophophora subgenus, even though the vast majority of all Drosophila species belong to the Drosophila subgenus. This chapter highlights some studies on the satDNA structure, organization, and evolution in two species groups from the Drosophila subgenus: the repleta and virilis groups. We also discuss and review the classification of other abundant tandem repeats found in these species in the light of the current information available.

卫星dna的结构、组织和进化:来自果蝇和雄性果蝇物种群的见解。
真核生物中的卫星dna (satdna)是丰富的基因组成分,可以发挥功能作用,但也可以在物种间快速变化,而在一个物种内是同质的,这使它们成为一个有趣和迷人的基因组成分研究。越来越清楚的是,satdna是基因组结构的重要组成部分,其结构、组织和丰度的变化可以在许多方面影响基因组和物种的进化。自50多年前satDNA被发现以来,来自果蝇属的物种一直被用作研究satDNA生物学几个方面的模型。尽管绝大多数果蝇属于果蝇亚属,但这些研究主要集中在黑腹果蝇和来自果蝇亚属的近缘种。本章重点介绍了果蝇亚属中两个类群(repleta和virilis)的satDNA结构、组织和进化的一些研究。我们还讨论和回顾了在这些物种中发现的其他丰富的串联重复序列的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信