Quantitative Plant Biology最新文献

筛选
英文 中文
Heritable responses to stress in plants 植物对压力的遗传反应
Quantitative Plant Biology Pub Date : 2023-12-07 DOI: 10.1017/qpb.2023.14
Igor Kovalchuk
{"title":"Heritable responses to stress in plants","authors":"Igor Kovalchuk","doi":"10.1017/qpb.2023.14","DOIUrl":"https://doi.org/10.1017/qpb.2023.14","url":null,"abstract":"Abstract Abstract Most plants are adapted to their environments through generations of exposure to all elements. The adaptation process involves the best possible response to fluctuations in the environment based on the genetic and epigenetic make-up of the organism. Many plant species have the capacity to acclimate or adapt to certain stresses, allowing them to respond more efficiently, with fewer resources diverted from growth and development. However, plants can also acquire protection against stress across generations. Such a response is known as an intergenerational response to stress; typically, plants lose most of the tolerance in the subsequent generation when propagated without stress. Occasionally, the protection lasts for more than one generation after stress exposure and such a response is called transgenerational. In this review, we will summarize what is known about inter- and transgenerational responses to stress, focus on phenotypic and epigenetic events, their mechanisms and ecological and evolutionary meaning.","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Barthlott effect 巴特洛特效应
Quantitative Plant Biology Pub Date : 2023-12-07 DOI: 10.1017/qpb.2023.15
Laurent Vonna
{"title":"The Barthlott effect","authors":"Laurent Vonna","doi":"10.1017/qpb.2023.15","DOIUrl":"https://doi.org/10.1017/qpb.2023.15","url":null,"abstract":"Abstract Abstract In 1997, Barthlott and Neinhuis published a groundbreaking article entitled \"Purity of the sacred lotus, or escape from contamination in biological surfaces\" that caused a true paradigm shift in surface science. In this article, they explained the water-repellent and self-cleaning properties of plants, attributing the superhydrophobicity to nano- and micrometric wax textures on the surface of the leaves. This became known as the \"Lotus Effect\". In the late 1980s, Barthlott already demonstrated the microtexture of plant surfaces and its effect on wetting. However, this knowledge remained confined to botany until the 1997 article popularized it. The dissemination of this knowledge to the materials science community led to the development of countless synthetic superhydrophobic surfaces and a better understanding of wetting mechanisms. The story of this discovery and its consequences demonstrates the relevance of atypical approaches and emphasizes the urgency of respecting biodiversity.","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis. 基于模型的全器官生长动力学重建揭示了叶片形态发生的不变模式。
Quantitative Plant Biology Pub Date : 2023-02-03 eCollection Date: 2023-01-01 DOI: 10.1017/qpb.2022.23
Mohamed Oughou, Eric Biot, Nicolas Arnaud, Aude Maugarny-Calès, Patrick Laufs, Philippe Andrey, Jasmine Burguet
{"title":"Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis.","authors":"Mohamed Oughou, Eric Biot, Nicolas Arnaud, Aude Maugarny-Calès, Patrick Laufs, Philippe Andrey, Jasmine Burguet","doi":"10.1017/qpb.2022.23","DOIUrl":"10.1017/qpb.2022.23","url":null,"abstract":"<p><p>Plant organ morphogenesis spans several orders of magnitude in time and space. Because of limitations in live-imaging, analysing whole organ growth from initiation to mature stages typically rely on static data sampled from different timepoints and individuals. We introduce a new model-based strategy for dating organs and for reconstructing morphogenetic trajectories over unlimited time windows based on static data. Using this approach, we show that <i>Arabidopsis thaliana</i> leaves are initiated at regular 1-day intervals. Despite contrasted adult morphologies, leaves of different ranks exhibited shared growth dynamics, with linear gradations of growth parameters according to leaf rank. At the sub-organ scale, successive serrations from same or different leaves also followed shared growth dynamics, suggesting that global and local leaf growth patterns are decoupled. Analysing mutants leaves with altered morphology highlighted the decorrelation between adult shapes and morphogenetic trajectories, thus stressing the benefits of our approach in identifying determinants and critical timepoints during organ morphogenesis.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9441224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 1972 Meadows report: A wake-up call for plant science. 1972年的梅多斯报告:为植物科学敲响了警钟。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.2
Olivier Hamant
{"title":"The 1972 Meadows report: A wake-up call for plant science.","authors":"Olivier Hamant","doi":"10.1017/qpb.2023.2","DOIUrl":"https://doi.org/10.1017/qpb.2023.2","url":null,"abstract":"<p><p>The 1972 Meadows report, 'the limits to growth', predicted a global socio-economic tipping point during the twenty-first century. Now supported by 50 years of empirical evidence, this work is a tribute to systems thinking and an invitation to take the current environmental crisis for what it is: neither a transition nor a bifurcation, but an inversion. For instance, we used matter (e.g., fossil fuel) to save time; we will use time to preserve matter (e.g., bioeconomy). We were exploiting ecosystems to fuel production; production will feed ecosystems. We centralised to optimise; we will decentralise to support resilience. In plant science, this new context calls for new research on plant complexity (e.g., multiscale robustness and benefits of variability), also extending to new scientific approaches (e.g., participatory research, art and science). Taking this turn reverses many paradigms and becomes a new responsibility for plant scientists as the world becomes increasingly turbulent.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/e8/S2632882823000024a.PMC10095848.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9738474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of pollen viability in Lantana camara by digital holographic microscopy. 数码全息显微技术定量测定大灯笼花粉活力。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.5
Vipin Kumar, Nishant Goyal, Abhishek Prasad, Suresh Babu, Kedar Khare, Gitanjali Yadav
{"title":"Quantification of pollen viability in <i>Lantana camara</i> by digital holographic microscopy.","authors":"Vipin Kumar,&nbsp;Nishant Goyal,&nbsp;Abhishek Prasad,&nbsp;Suresh Babu,&nbsp;Kedar Khare,&nbsp;Gitanjali Yadav","doi":"10.1017/qpb.2023.5","DOIUrl":"https://doi.org/10.1017/qpb.2023.5","url":null,"abstract":"<p><p>Pollen grains represent the male gametes of seed plants and their viability is critical for sexual reproduction in the plant life cycle. Palynology and viability studies have traditionally been used to address a range of botanical, ecological and geological questions, but recent work has revealed the importance of pollen viability in invasion biology as well. Here, we report an efficient visual method for assessing the viability of pollen using digital holographic microscopy (DHM). Imaging data reveal that quantitative phase information provided by the technique can be correlated with viability as indicated by the outcome of the colorimetric test. We successfully test this method on pollen grains of <i>Lantana camara</i>, a well-known alien invasive plant in the tropical world. Our results show that pollen viability may be assessed accurately without the usual staining procedure and suggest potential applications of the DHM methodology to a number of emerging areas in plant science.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9925992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quantitative regeneration: Skoog and Miller revisited. 定量再生:斯库格和米勒的重新审视。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.9
Charles W Melnyk
{"title":"Quantitative regeneration: Skoog and Miller revisited.","authors":"Charles W Melnyk","doi":"10.1017/qpb.2023.9","DOIUrl":"https://doi.org/10.1017/qpb.2023.9","url":null,"abstract":"<p><p>In 1957, Skoog and Miller published their seminal work on the effects of hormones upon plant growth. By varying the concentrations of auxin and cytokinin, they observed dramatic differences in shoot and root growth from tobacco stem cultures. Their finding that quantitative differences in hormone concentrations could dramatically alter the fate of developing organs provided a foundation for understanding organ formation and tissue regeneration. Their in vitro assays established plant propagation techniques that were critical for regenerating transgenic plants. Here, I discuss their original paper, what led to their findings and its impact on our understanding of hormone interactions, how plants regenerate and in vitro tissue culture techniques.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10316498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Towards modelling emergence in plant systems. 植物系统的萌发建模。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.6
Melissa Tomkins
{"title":"Towards modelling emergence in plant systems.","authors":"Melissa Tomkins","doi":"10.1017/qpb.2023.6","DOIUrl":"https://doi.org/10.1017/qpb.2023.6","url":null,"abstract":"<p><p>Plants are complex systems made up of many interacting components, ranging from architectural elements such as branches and roots, to entities comprising cellular processes such as metabolic pathways and gene regulatory networks. The collective behaviour of these components, along with the plant's response to the environment, give rise to the plant as a whole. Properties that result from these interactions and cannot be attributed to individual parts alone are called emergent properties, occurring at different time and spatial scales. Deepening our understanding of plant growth and development requires computational tools capable of handling a large number of interactions and a multiscale approach connecting properties across scales. There currently exist few methods able to integrate models across scales, or models capable of predicting new emergent plant properties. This perspective explores current approaches to modelling emergent behaviour in plants, with a focus on how current and future tools can handle multiscale plant systems.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data science approaches provide a roadmap to understanding the role of abscisic acid in defence. 数据科学方法为理解脱落酸在防御中的作用提供了路线图。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.1
Katie Stevens, Iain G Johnston, Estrella Luna
{"title":"Data science approaches provide a roadmap to understanding the role of abscisic acid in defence.","authors":"Katie Stevens,&nbsp;Iain G Johnston,&nbsp;Estrella Luna","doi":"10.1017/qpb.2023.1","DOIUrl":"https://doi.org/10.1017/qpb.2023.1","url":null,"abstract":"<p><p>Abscisic acid (ABA) is a plant hormone well known to regulate abiotic stress responses. ABA is also recognised for its role in biotic defence, but there is currently a lack of consensus on whether it plays a positive or negative role. Here, we used supervised machine learning to analyse experimental observations on the defensive role of ABA to identify the most influential factors determining disease phenotypes. ABA concentration, plant age and pathogen lifestyle were identified as important modulators of defence behaviour in our computational predictions. We explored these predictions with new experiments in tomato, demonstrating that phenotypes after ABA treatment were indeed highly dependent on plant age and pathogen lifestyle. Integration of these new results into the statistical analysis refined the quantitative model of ABA influence, suggesting a framework for proposing and exploiting further research to make more progress on this complex question. Our approach provides a unifying road map to guide future studies involving the role of ABA in defence.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9738478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Convergence and transdisciplinary teaching in quantitative biology. 定量生物学的融合与跨学科教学。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.8
Robert Mayes, Joseph Dauer, David Owens
{"title":"Convergence and transdisciplinary teaching in quantitative biology.","authors":"Robert Mayes,&nbsp;Joseph Dauer,&nbsp;David Owens","doi":"10.1017/qpb.2023.8","DOIUrl":"https://doi.org/10.1017/qpb.2023.8","url":null,"abstract":"<p><p>The United States National Science and Technology Council has made a call for improving STEM (Science, Technology, Engineering, and Mathematics) education at the convergence of science, technology, engineering, and mathematics. The National Science Foundation (NSF) views <i>convergence</i> as the merging of ideas, approaches, and technologies from widely diverse fields of knowledge to stimulate innovation and discovery. Teaching convergency requires moving to the transdisciplinary level of integration where there is deep integration of skills, disciplines, and knowledge to solve a challenging real-world problem. Here we present a summary on convergence and transdisciplinary teaching. We then provide examples of convergence and transdisciplinary teaching in plant biology, and conclude by discussing limitations to contemporary conceptions of convergency and transdisciplinary STEM.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10022561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechano-chemical regulation of complex cell shape formation: Epidermal pavement cells-A case study. 复杂细胞形态形成的机械-化学调控:表皮铺装细胞-个案研究。
Quantitative Plant Biology Pub Date : 2023-01-01 DOI: 10.1017/qpb.2023.4
Ruben van Spoordonk, René Schneider, Arun Sampathkumar
{"title":"Mechano-chemical regulation of complex cell shape formation: Epidermal pavement cells-A case study.","authors":"Ruben van Spoordonk,&nbsp;René Schneider,&nbsp;Arun Sampathkumar","doi":"10.1017/qpb.2023.4","DOIUrl":"https://doi.org/10.1017/qpb.2023.4","url":null,"abstract":"<p><p>All plant cells are encased by walls, which provide structural support and control their morphology. How plant cells regulate the deposition of the wall to generate complex shapes is a topic of ongoing research. Scientists have identified several model systems, the epidermal pavement cells of cotyledons and leaves being an ideal platform to study the formation of complex cell shapes. These cells indeed grow alternating protrusions and indentations resulting in jigsaw puzzle cell shapes. How and why these cells adopt such shapes has shown to be a challenging problem to solve, notably because it involves the integration of molecular and mechanical regulation together with cytoskeletal dynamics and cell wall modifications. In this review, we highlight some recent progress focusing on how these processes may be integrated at the cellular level along with recent quantitative morphometric approaches.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9918019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信