{"title":"From Active Stars to Black Holes: A Discovery Tool for Galactic X-Ray Sources","authors":"Antonio C. Rodriguez","doi":"10.1088/1538-3873/ad357c","DOIUrl":"https://doi.org/10.1088/1538-3873/ad357c","url":null,"abstract":"Galactic X-ray sources are diverse, ranging from active M dwarfs to compact object binaries, and everything in between. The X-ray landscape of today is rich, with point source catalogs such as those from XMM-Newton, Chandra, and Swift, each with ≳105 sources and growing. Furthermore, X-ray astronomy is on the verge of being transformed through data releases from the all-sky SRG/eROSITA survey. Many X-ray sources can be associated with an optical counterpart, which in the era of Gaia, can be determined to be Galactic or extragalactic through parallax and proper motion information. Here, I present a simple diagram—the “X-ray Main Sequence,” which distinguishes between compact objects and active stars based on their optical color and X-ray-to-optical flux ratio (FX/Fopt). As a proof of concept, I present optical spectroscopy of six exotic accreting WDs discovered using the X-ray Main Sequence as applied to the XMM-Newton catalog. Looking ahead to surveys of the near future, I additionally present SDSS-V optical spectroscopy of new systems discovered using the X-ray Main Sequence as applied to the SRG/eROSITA eFEDS catalog.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"19 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140937379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. R. Kulkarni, Charles Beichman, Michael E. Ressler
{"title":"Mid-infrared Fine Structure Lines from the Galactic Warm Ionized Medium","authors":"S. R. Kulkarni, Charles Beichman, Michael E. Ressler","doi":"10.1088/1538-3873/ace6d9","DOIUrl":"https://doi.org/10.1088/1538-3873/ace6d9","url":null,"abstract":"The Warm Ionized Medium (WIM) hosts most of the ionized gas in the Galaxy and occupies perhaps a quarter of the volume of the Galactic disk. Decoding the spectrum of the Galactic diffuse ionizing field is of fundamental interest. This can be done via direct measurements of ionization fractions of various elements. Based on current physical models for the WIM we predicted that mid-IR fine structure lines of Ne, Ar and S would be within the grasp of the Mid-Infrared Imager-Medium Resolution Spectrometer (MIRI-MRS), an Integral Field Unit (IFU) spectrograph, aboard the James Webb Space Telescope (JWST). Motivated thus we analyzed a pair of commissioning data sets and detected [Ne <sc>ii</sc>] 12.81 <italic toggle=\"yes\">μ</italic>m, [S <sc>iii</sc>] 18.71 <italic toggle=\"yes\">μ</italic>m and possibly [S <sc>iv</sc>] 10.51 <italic toggle=\"yes\">μ</italic>m. The inferred emission measure for these detections is about 10 cm<sup>−6</sup> pc, typical of the WIM. These detections are broadly consistent with expectations of physical models for the WIM. The current detections are limited by uncorrected fringing (and to a lesser extent by baseline variations). In due course, we expect, as with other IFUs, the calibration pipeline to deliver photon-noise-limited spectra. The detections reported here bode well for the study of the WIM. Along most lines-of-sight hour-long MIRI-MRS observations should detect line emission from the WIM. When combined with optical observations by modern IFUs with high spectral resolution on large ground-based telescopes, the ionization fraction and temperature of neon and sulfur can be robustly inferred. Separately, the ionization of helium in the WIM can be probed by NIRspec. Finally, joint JWST and optical IFU studies will open up a new cottage industry of studying the WIM on arcsecond scales.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"187 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140937441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gu Lim, Dohyeong Kim, Seonghun Lim, Myungshin Im, Hyeonho Choi, Jaemin Park, Keun-Hong Park, Junyeong Park, Chaudhary Muskaan, Donghyun Kim and Hayeong Jeong
{"title":"The Robotic MAAO 0.7 m Telescope System: Performance and Standard Photometric System","authors":"Gu Lim, Dohyeong Kim, Seonghun Lim, Myungshin Im, Hyeonho Choi, Jaemin Park, Keun-Hong Park, Junyeong Park, Chaudhary Muskaan, Donghyun Kim and Hayeong Jeong","doi":"10.1088/1538-3873/ad3f4f","DOIUrl":"https://doi.org/10.1088/1538-3873/ad3f4f","url":null,"abstract":"We introduce a 0.7 m telescope system at the Miryang Arirang Astronomical Observatory (MAAO), a public observatory in Miryang, Korea. System integration and a scheduling program enable the 0.7 m telescope system to operate completely robotically during nighttime, eliminating the need for human intervention. Using the 0.7 m telescope system, we obtain atmospheric extinction coefficients and the zero-point magnitudes by observing standard stars. As a result, we find that atmospheric extinctions are moderate but they can sometimes increase depending on the weather conditions. The measured 5σ limiting magnitudes reach down to BVRI = 19.4–19.6 AB mag for a point source with a total integrated time of 10 minutes under clear weather conditions, demonstrating comparable performance with other observational facilities operating under similar specifications and sky conditions. We expect that the newly established MAAO 0.7 m telescope system will contribute significantly to the observational studies of astronomy. Particularly, with its capability for robotic observations, this system, although its primary duty is for public viewing, can be extensively used for the time-series observation of transients.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"17 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on the Optimal Design of the High-stability Optical System for Atmospheric Spectra in Transit Observation","authors":"Fang Wang","doi":"10.1088/1538-3873/ad3eb2","DOIUrl":"https://doi.org/10.1088/1538-3873/ad3eb2","url":null,"abstract":"Capturing the characteristics of exoplanetary atmospheres (CEA) through transit spectroscopy (TS) holds profound implications for our understanding of planetary formation and evolution. However, TS, the method employed for detecting CEA, indirectly extracts these characteristics from the subtle variations in stellar spectra during the transit process, necessitating a high level of observational stability in optical instrumentation. To mitigate observational errors in spectral energy within the optical system, this dissertation delves into the optimal design of a high-stability optical system tailored for atmospheric spectra in transit observations. Initially, a theoretical model of transit signal-to-noise ratios (S/Ns) catered to the EAC retrievals is formulated based on transit observation strategies. Subsequently, the optimal parameters and design approach for the optical system are explored through an analysis of the optical factors influencing S/N. Leveraging an observation simulator for optical instruments, the detection feasibility of the optimized optical system for capturing CEA is validated.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"75 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taylor A. Hutchison, Brian D. Welch, Jane R. Rigby, Grace M. Olivier, Jack E. Birkin, Kedar A. Phadke, Gourav Khullar, Bernard J. Rauscher, Keren Sharon, Manuel Aravena, Matthew B. Bayliss, Lauren A. Elicker, Seonwoo Kim, Manuel Solimano, Joaquin D. Vieira, David Vizgan and On Behalf of the JWST TEMPLATES Early Release Science Team
{"title":"TEMPLATES: A Robust Outlier Rejection Method for JWST/NIRSpec Integral Field Spectroscopy","authors":"Taylor A. Hutchison, Brian D. Welch, Jane R. Rigby, Grace M. Olivier, Jack E. Birkin, Kedar A. Phadke, Gourav Khullar, Bernard J. Rauscher, Keren Sharon, Manuel Aravena, Matthew B. Bayliss, Lauren A. Elicker, Seonwoo Kim, Manuel Solimano, Joaquin D. Vieira, David Vizgan and On Behalf of the JWST TEMPLATES Early Release Science Team","doi":"10.1088/1538-3873/ad34fd","DOIUrl":"https://doi.org/10.1088/1538-3873/ad34fd","url":null,"abstract":"We describe a custom outlier rejection algorithm for JWST/NIRSpec integral field spectroscopy. This method uses a layered sigma clipping approach that adapts clipping thresholds based upon the spatial profile of the science target. We find that this algorithm produces a robust outlier rejection while simultaneously preserving the signal of the science target. Originally developed as a response to unsatisfactory initial performance of the jwst pipeline outlier detection step, this method works either as a standalone solution, or as a supplement to the current pipeline software. Comparing leftover (i.e., not flagged) artifacts with the current pipeline’s outlier detection step, we find that our method results in one fifth as many residual artifacts as the jwst pipeline. However, we find a combination of both methods removes nearly all artifacts—an approach that takes advantage of both our algorithm’s robust outlier rejection and the pipeline’s use of individual dithers. This combined approach is what the TEMPLATES Early Release Science team has converged upon for our NIRSpec observations. Finally, we publicly release the code and Jupyter notebooks for the custom outlier rejection algorithm.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"101 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsay M. Berkhout, Daniel C. Jacobs, Zuhra Abdurashidova, Tyrone Adams, James E. Aguirre, Paul Alexander, Zaki S. Ali, Rushelle Baartman, Yanga Balfour, Adam P. Beardsley, Gianni Bernardi, Tashalee S. Billings, Judd D. Bowman, Richard F. Bradley, Philip Bull, Jacob Burba, Ruby Byrne, Steven Carey, Chris L. Carilli, Kai-Feng Chen, Carina Cheng, Samir Choudhuri, David R. DeBoer, Eloy de Lera Acedo, Matt Dexter, Joshua S. Dillon, Scott Dynes, Nico Eksteen, John Ely, Aaron Ewall-Wice, Nicolas Fagnoni, Randall Fritz, Steven R. Furlanetto, Kingsley Gale-Sides, Hugh Garsden, Bharat Kumar Gehlot, Abhik Ghosh, Brian Glendenning, Adelie Gorce, Deepthi Gorthi, Bradley Greig, Jasper Grobbelaar, Ziyaad Halday, Bryna J. Hazelton, Jacqueline N. Hewitt, Jack Hickish, Tian Huang, Alec Josaitis, Austin Julius, MacCalvin Kariseb, Nicholas S. Kern, Joshua Kerrigan, Honggeun Kim, Piyanat Kittiwisit, Saul A. Kohn, Matthew Kolopanis, Adam Lanman, Paul La Plante, Adrian Liu, Anita Loots, Yin-Zhe Ma, David Harold Edward MacMahon, Lourence Malan, Cresshim Malgas, Keith Malgas, Bradley Marero, Zachary E. Martinot, Andrei Mesinger, Mathakane Molewa, Miguel F. Morales, Tshegofalang Mosiane, Steven G. Murray, Abraham R. Neben, Bojan Nikolic, Chuneeta Devi Nunhokee, Hans Nuwegeld, Aaron R. Parsons, Robert Pascua, Nipanjana Patra, Samantha Pieterse, Yuxiang Qin, Eleanor Rath, Nima Razavi-Ghods, Daniel Riley, James Robnett, Kathryn Rosie, Mario G. Santos, Peter Sims, Saurabh Singh, Dara Storer, Hilton Swarts, Jianrong Tan, Nithyanandan Thyagarajan, Pieter van Wyngaarden, Peter K. G. Williams, Haoxuan Zheng, Zhilei Xu
{"title":"Hydrogen Epoch of Reionization Array (HERA) Phase II Deployment and Commissioning","authors":"Lindsay M. Berkhout, Daniel C. Jacobs, Zuhra Abdurashidova, Tyrone Adams, James E. Aguirre, Paul Alexander, Zaki S. Ali, Rushelle Baartman, Yanga Balfour, Adam P. Beardsley, Gianni Bernardi, Tashalee S. Billings, Judd D. Bowman, Richard F. Bradley, Philip Bull, Jacob Burba, Ruby Byrne, Steven Carey, Chris L. Carilli, Kai-Feng Chen, Carina Cheng, Samir Choudhuri, David R. DeBoer, Eloy de Lera Acedo, Matt Dexter, Joshua S. Dillon, Scott Dynes, Nico Eksteen, John Ely, Aaron Ewall-Wice, Nicolas Fagnoni, Randall Fritz, Steven R. Furlanetto, Kingsley Gale-Sides, Hugh Garsden, Bharat Kumar Gehlot, Abhik Ghosh, Brian Glendenning, Adelie Gorce, Deepthi Gorthi, Bradley Greig, Jasper Grobbelaar, Ziyaad Halday, Bryna J. Hazelton, Jacqueline N. Hewitt, Jack Hickish, Tian Huang, Alec Josaitis, Austin Julius, MacCalvin Kariseb, Nicholas S. Kern, Joshua Kerrigan, Honggeun Kim, Piyanat Kittiwisit, Saul A. Kohn, Matthew Kolopanis, Adam Lanman, Paul La Plante, Adrian Liu, Anita Loots, Yin-Zhe Ma, David Harold Edward MacMahon, Lourence Malan, Cresshim Malgas, Keith Malgas, Bradley Marero, Zachary E. Martinot, Andrei Mesinger, Mathakane Molewa, Miguel F. Morales, Tshegofalang Mosiane, Steven G. Murray, Abraham R. Neben, Bojan Nikolic, Chuneeta Devi Nunhokee, Hans Nuwegeld, Aaron R. Parsons, Robert Pascua, Nipanjana Patra, Samantha Pieterse, Yuxiang Qin, Eleanor Rath, Nima Razavi-Ghods, Daniel Riley, James Robnett, Kathryn Rosie, Mario G. Santos, Peter Sims, Saurabh Singh, Dara Storer, Hilton Swarts, Jianrong Tan, Nithyanandan Thyagarajan, Pieter van Wyngaarden, Peter K. G. Williams, Haoxuan Zheng, Zhilei Xu","doi":"10.1088/1538-3873/ad3122","DOIUrl":"https://doi.org/10.1088/1538-3873/ad3122","url":null,"abstract":"This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometre Array pathfinder instrument, we also show a number of “case studies” that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"302 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edgar Marrufo Villalpando, Alex Drlica-Wagner, Andrés A. Plazas Malagón, Abhishek Bakshi, Marco Bonati, Julia Campa, Braulio Cancino, Claudio R. Chavez, Juan Estrada, Guillermo Fernandez Moroni, Luciano Fraga, Manuel E. Gaido, Stephen Holland, Rachel Hur, Michelle Jonas, Peter Moore, Javier Tiffenberg
{"title":"Characterization and Optimization of Skipper CCDs for the SOAR Integral Field Spectrograph","authors":"Edgar Marrufo Villalpando, Alex Drlica-Wagner, Andrés A. Plazas Malagón, Abhishek Bakshi, Marco Bonati, Julia Campa, Braulio Cancino, Claudio R. Chavez, Juan Estrada, Guillermo Fernandez Moroni, Luciano Fraga, Manuel E. Gaido, Stephen Holland, Rachel Hur, Michelle Jonas, Peter Moore, Javier Tiffenberg","doi":"10.1088/1538-3873/ad2865","DOIUrl":"https://doi.org/10.1088/1538-3873/ad2865","url":null,"abstract":"We present results from the characterization and optimization of Skipper charge-coupled devices (CCDs) for use in a focal plane prototype for the Southern Astrophysical Research Integral Field Spectrograph (SIFS). We tested eight Skipper CCDs and selected six for SIFS based on performance results. The Skipper CCDs are 6k × 1k, 15 <italic toggle=\"yes\">μ</italic>m pixels, thick, fully depleted, <italic toggle=\"yes\">p</italic>-channel devices that have been thinned to ∼250 <italic toggle=\"yes\">μ</italic>m, backside processed, and treated with an anti-reflective coating. We demonstrate a single-sample readout noise of <4.3 e<sup>−</sup> rms pixel<sup>−1</sup> in all amplifiers. We optimize the readout sequence timing to achieve a readout noise of 0.5 e<sup>−</sup> rms pixel<sup>−1</sup> after 74 non-destructive measurements, which can be accomplished in a region covering 5% of the detector area in a readout time of <4 minutes. We demonstrate single-photon-counting in all 24 amplifiers (four amplifiers per detector) with a readnoise of <italic toggle=\"yes\">σ</italic>\u0000<sub>\u0000<italic toggle=\"yes\">N</italic>\u0000</sub> ∼ 0.18 e<sup>−</sup> rms pixel<sup>−1</sup> after <italic toggle=\"yes\">N</italic>\u0000<sub>samp</sub> = 400 samples, and we constrain the degree of nonlinearity to be ≲1% at low signal levels (0 e<sup>−</sup> to 50 e<sup>−</sup>). Clock-induced charge (CIC) remains an important issue when the Skipper CCD is configured to provide a large full-well capacity. We achieve a CIC rate of <1.45 × 10<sup>−3</sup> e<sup>−</sup> pixel<sup>−1</sup> frame<sup>−1</sup> for a full-well capacity of ∼900 e<sup>−</sup>, which increases to a CIC rate of ∼3 e<sup>−</sup> pixel<sup>−1</sup> frame<sup>−1</sup> for full-well capacities ∼40,000–65,000 e<sup>−</sup>. We also perform conventional CCD characterization measurements such as charge transfer inefficiency (3.44 × 10<sup>−7</sup> on average), dark current (∼2 × 10<sup>−4</sup> e<sup>−</sup> pixel<sup>−1</sup> s<sup>−1</sup>), photon transfer curves, cosmetic defects (<0.45% “bad” pixels), and charge diffusion (point-spread function < 7.5 <italic toggle=\"yes\">μ</italic>m) to verify that these properties are consistent with expectations from conventional <italic toggle=\"yes\">p</italic>-channel CCDs used for astronomy. Furthermore, we provide the first measurements of the brighter-fatter effect and absolute quantum efficiency (≳80% between 450 and 980 nm; ≳90% between 600 and 900 nm) using Skipper CCDs.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"10 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Varoujan Gorjian, Steven Levin, John Arballo, Virisha Timmaraju, Ryan Dorcey, Nancy Kreuser-Jenkins, Lisa Lamb, Joseph Lazio, Zoe Webb-Mack
{"title":"The Goldstone Apple Valley Radio Telescope (GAVRT) Search for Extra Terrestrial Intelligence (SETI)","authors":"Varoujan Gorjian, Steven Levin, John Arballo, Virisha Timmaraju, Ryan Dorcey, Nancy Kreuser-Jenkins, Lisa Lamb, Joseph Lazio, Zoe Webb-Mack","doi":"10.1088/1538-3873/ad2f4f","DOIUrl":"https://doi.org/10.1088/1538-3873/ad2f4f","url":null,"abstract":"This paper reports the results from a student-led Search for Extraterrestrial Intelligence (SETI), also known as technosignatures, targeting the plane of the Milky Way as a part of the Goldstone Apple Valley Radio Telescope (GAVRT) collaboration between the Lewis Center for Educational Research (LCER) and the Jet Propulsion Laboratory. Students associated with LCER submit analytic reports of spectral data targeting specific regions of the Milky Way, identifying interference, noise, and Candidate signals potentially originating from intelligent sources. GAVRT-SETI's search is guided by the assumption that a narrow-band radio signal (<1.5 Hz) from a fixed location in the sky, occurring across multiple observation periods, is unlikely to be caused by instrument noise or by a natural source. Thus, we searched the reported data for similar signals occurring during different observation periods within the same region of sky. No such signals were found. However, our analysis of the frequency distribution of Candidates suggests that at least a few percent of the Candidates are associated with low-level radio-frequency interference.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"96 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathan W. Galliher, Thomas Procter, Nicholas M. Law, Hank Corbett, Ward S. Howard, Alan Vasquez Soto, Ramses Gonzalez, Lawrence Machia, Jonathan Carney, William J. Marshall
{"title":"The ArgusSpec Prototype: Autonomous Spectroscopic Follow-up of Flares Detected by Large Array Telescopes","authors":"Nathan W. Galliher, Thomas Procter, Nicholas M. Law, Hank Corbett, Ward S. Howard, Alan Vasquez Soto, Ramses Gonzalez, Lawrence Machia, Jonathan Carney, William J. Marshall","doi":"10.1088/1538-3873/ad2c95","DOIUrl":"https://doi.org/10.1088/1538-3873/ad2c95","url":null,"abstract":"ArgusSpec is a prototype autonomous spectroscopic follow-up instrument designed to characterize flares detected by the Argus Pathfinder telescope array by taking short exposure (30 s) broadband spectra (370–750 nm) at low resolutions (<italic toggle=\"yes\">R</italic> ∼ 150 at 500 nm). The instrument is built from consumer off-the-shelf astronomical equipment, assembled inside a shipping container, and deployed alongside the Argus Pathfinder at a dark sky observing site in Western North Carolina. In this paper, we describe the hardware design, system electronics, custom control software suite, automated target acquisition procedure, and data reduction pipeline. We present initial on-sky test data used to evaluate system performance and show a series of spectra taken of a small flare from AD Leonis. The $35k prototype ArgusSpec was designed, built, and deployed in under a year, largely from existing parts, and has been operating on-sky since 2023 March. With current hardware and software, the system is capable of receiving an observation, slewing, performing autonomous slit acquisition, and beginning data acquisition within an average of 32 s. With Argus Pathfinder’s 1 s cadence survey reporting alerts of rising sources within 2 s of onset, ArgusSpec can reach new targets well within a minute of the start of the event. As built, ArgusSpec can observe targets down to a 20<italic toggle=\"yes\">σ</italic> limiting magnitude of <italic toggle=\"yes\">m</italic>\u0000<sub>\u0000<italic toggle=\"yes\">V</italic>\u0000</sub> ≈ 13 at 30 s cadence with an optical resolution of <italic toggle=\"yes\">R</italic> ∼ 150 (at 500 nm). With automated rapid acquisition demonstrated, later hardware upgrades will be based on a clean-sheet optical design, solving many issues in the current system, significantly improving the limiting magnitude, and potentially enabling deep spectroscopy by the coaddition of data from an array of ArgusSpec systems. The primary science driver behind ArgusSpec is the characterization of the blackbody evolution of flares from nearby M-dwarfs. Large flares emitted by these stars could have significant impacts on the potential habitability of any orbiting exoplanets, but our current understanding of these events is in large part built on observations from a handful of active stars. ArgusSpec will characterize large numbers of flares from across the night sky, building a spectroscopic library of the most extreme events from a wide variety of stellar masses and ages.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"280 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the Influence of Urban Lights on Night Sky Brightness with a Smartphone","authors":"Yingqiang Wang, Yong Zhao, Weijia Sun, Fan Yang, Licai Deng, Fei He, Zhaojin Rong, Yong Wei","doi":"10.1088/1538-3873/ad332a","DOIUrl":"https://doi.org/10.1088/1538-3873/ad332a","url":null,"abstract":"The darkness of the sky is a critical parameter for assessing the suitability of an astronomical site. Among various sources of light pollution, urban lights pose the most significant threat to ground-based optical astronomical and planetary observations. Quantitatively assessing the impact of urban lights with varying scales and fluxes is indispensable for selecting an ideal optical observation site. In order to quantitatively assess the changes in Night Sky Brightness (NSB) relative to the distance from urban areas and to establish a foundation for safeguarding the light environment at the newly developed Lenghu astronomical site on the Tibetan Plateau, we employed both a Sky Quality Meter and a pre-calibrated smartphone. These instruments were used to measure the NSB in the vicinity of two cities, Da Qaidam and Delingha, which vary in size and radiant flux, on the Tibetan Plateau. The findings indicate that the NSB around both cities decreases significantly as the distance from the city center increases, although the rate of decrease varies between the two locations. This decline can be effectively modeled using an exponential decay function. Notably, the influence of city lights on NSB becomes negligible at distances exceeding 30 km from Da Qaidam, while for Delingha, this distance extends to 50 km due to its larger city size and higher total radiant flux. The methodologies and results presented in this paper offer valuable insights for the selection of astronomical observation sites and the development of light pollution management policies.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"280 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}