Gu Lim, Dohyeong Kim, Seonghun Lim, Myungshin Im, Hyeonho Choi, Jaemin Park, Keun-Hong Park, Junyeong Park, Chaudhary Muskaan, Donghyun Kim and Hayeong Jeong
{"title":"机器人 MAAO 0.7 米望远镜系统:性能和标准测光系统","authors":"Gu Lim, Dohyeong Kim, Seonghun Lim, Myungshin Im, Hyeonho Choi, Jaemin Park, Keun-Hong Park, Junyeong Park, Chaudhary Muskaan, Donghyun Kim and Hayeong Jeong","doi":"10.1088/1538-3873/ad3f4f","DOIUrl":null,"url":null,"abstract":"We introduce a 0.7 m telescope system at the Miryang Arirang Astronomical Observatory (MAAO), a public observatory in Miryang, Korea. System integration and a scheduling program enable the 0.7 m telescope system to operate completely robotically during nighttime, eliminating the need for human intervention. Using the 0.7 m telescope system, we obtain atmospheric extinction coefficients and the zero-point magnitudes by observing standard stars. As a result, we find that atmospheric extinctions are moderate but they can sometimes increase depending on the weather conditions. The measured 5σ limiting magnitudes reach down to BVRI = 19.4–19.6 AB mag for a point source with a total integrated time of 10 minutes under clear weather conditions, demonstrating comparable performance with other observational facilities operating under similar specifications and sky conditions. We expect that the newly established MAAO 0.7 m telescope system will contribute significantly to the observational studies of astronomy. Particularly, with its capability for robotic observations, this system, although its primary duty is for public viewing, can be extensively used for the time-series observation of transients.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"17 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Robotic MAAO 0.7 m Telescope System: Performance and Standard Photometric System\",\"authors\":\"Gu Lim, Dohyeong Kim, Seonghun Lim, Myungshin Im, Hyeonho Choi, Jaemin Park, Keun-Hong Park, Junyeong Park, Chaudhary Muskaan, Donghyun Kim and Hayeong Jeong\",\"doi\":\"10.1088/1538-3873/ad3f4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a 0.7 m telescope system at the Miryang Arirang Astronomical Observatory (MAAO), a public observatory in Miryang, Korea. System integration and a scheduling program enable the 0.7 m telescope system to operate completely robotically during nighttime, eliminating the need for human intervention. Using the 0.7 m telescope system, we obtain atmospheric extinction coefficients and the zero-point magnitudes by observing standard stars. As a result, we find that atmospheric extinctions are moderate but they can sometimes increase depending on the weather conditions. The measured 5σ limiting magnitudes reach down to BVRI = 19.4–19.6 AB mag for a point source with a total integrated time of 10 minutes under clear weather conditions, demonstrating comparable performance with other observational facilities operating under similar specifications and sky conditions. We expect that the newly established MAAO 0.7 m telescope system will contribute significantly to the observational studies of astronomy. Particularly, with its capability for robotic observations, this system, although its primary duty is for public viewing, can be extensively used for the time-series observation of transients.\",\"PeriodicalId\":20820,\"journal\":{\"name\":\"Publications of the Astronomical Society of the Pacific\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of the Pacific\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1538-3873/ad3f4f\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad3f4f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Robotic MAAO 0.7 m Telescope System: Performance and Standard Photometric System
We introduce a 0.7 m telescope system at the Miryang Arirang Astronomical Observatory (MAAO), a public observatory in Miryang, Korea. System integration and a scheduling program enable the 0.7 m telescope system to operate completely robotically during nighttime, eliminating the need for human intervention. Using the 0.7 m telescope system, we obtain atmospheric extinction coefficients and the zero-point magnitudes by observing standard stars. As a result, we find that atmospheric extinctions are moderate but they can sometimes increase depending on the weather conditions. The measured 5σ limiting magnitudes reach down to BVRI = 19.4–19.6 AB mag for a point source with a total integrated time of 10 minutes under clear weather conditions, demonstrating comparable performance with other observational facilities operating under similar specifications and sky conditions. We expect that the newly established MAAO 0.7 m telescope system will contribute significantly to the observational studies of astronomy. Particularly, with its capability for robotic observations, this system, although its primary duty is for public viewing, can be extensively used for the time-series observation of transients.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.