Radiology. Imaging cancer最新文献

筛选
英文 中文
Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge. 用于预测乳腺癌新辅助化疗反应的乳腺多参数磁共振成像:BMMR2 挑战赛
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230033
Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton
{"title":"Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge.","authors":"Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton","doi":"10.1148/rycan.230033","DOIUrl":"10.1148/rycan.230033","url":null,"abstract":"<p><p>Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 <b>Keywords:</b> MRI, Breast, Tumor Response <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230033"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging of the Posttreatment Head and Neck: Expected Findings and Potential Complications. 治疗后的头颈部成像:预期结果和潜在并发症。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230155
Sneh Brahmbhatt, Cameron J Overfield, Patricia A Rhyner, Alok A Bhatt
{"title":"Imaging of the Posttreatment Head and Neck: Expected Findings and Potential Complications.","authors":"Sneh Brahmbhatt, Cameron J Overfield, Patricia A Rhyner, Alok A Bhatt","doi":"10.1148/rycan.230155","DOIUrl":"10.1148/rycan.230155","url":null,"abstract":"<p><p>Interpretation of posttreatment imaging findings in patients with head and neck cancer can pose a substantial challenge. Malignancies in this region are often managed through surgery, radiation therapy, chemotherapy, and newer approaches like immunotherapy. After treatment, patients may experience various expected changes, including mucositis, soft-tissue inflammation, laryngeal edema, and salivary gland inflammation. Imaging techniques such as CT, MRI, and PET scans help differentiate these changes from tumor recurrence. Complications such as osteoradionecrosis, chondroradionecrosis, and radiation-induced vasculopathy can arise because of radiation effects. Radiation-induced malignancies may occur in the delayed setting. This review article emphasizes the importance of posttreatment surveillance imaging to ensure proper care of patients with head and neck cancer and highlights the complexities in distinguishing between expected treatment effects and potential complications. <b>Keywords:</b> CT, MR Imaging, Radiation Therapy, Ear/Nose/Throat, Head/Neck, Nervous-Peripheral, Bone Marrow, Calvarium, Carotid Arteries, Jaw, Face, Larynx © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230155"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Evolution of AI in Predicting Response to Minimally Invasive Image-guided Therapies. 人工智能在预测微创图像引导疗法反应方面的发展。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.249004
Nariman Nezami, Mohammad Mirza-Aghazadeh-Attari
{"title":"The Evolution of AI in Predicting Response to Minimally Invasive Image-guided Therapies.","authors":"Nariman Nezami, Mohammad Mirza-Aghazadeh-Attari","doi":"10.1148/rycan.249004","DOIUrl":"10.1148/rycan.249004","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e249004"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-Renal Transplant Lymphoproliferative Disorder. 肾移植后淋巴组织增生性疾病。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230075
Yash Jain, Nilendu Purandare, Archi Agrawal, Sneha Shah, Ameya Puranik, Venkatesh Rangarajan
{"title":"Post-Renal Transplant Lymphoproliferative Disorder.","authors":"Yash Jain, Nilendu Purandare, Archi Agrawal, Sneha Shah, Ameya Puranik, Venkatesh Rangarajan","doi":"10.1148/rycan.230075","DOIUrl":"10.1148/rycan.230075","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230075"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
White Fat Uptake: A Rare Confounder of Pediatric 18F-FDG PET/CT. 白色脂肪摄取:小儿 18F-FDG PET/CT 的罕见干扰因素。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230148
Lance Zimmerman, Hassan Aboughalia
{"title":"White Fat Uptake: A Rare Confounder of Pediatric <sup>18</sup>F-FDG PET/CT.","authors":"Lance Zimmerman, Hassan Aboughalia","doi":"10.1148/rycan.230148","DOIUrl":"10.1148/rycan.230148","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230148"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carcinoid Heart Disease. 类癌性心脏病
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230164
Sean Johnson, Matthias R Benz, Kathleen Ruchalski
{"title":"Carcinoid Heart Disease.","authors":"Sean Johnson, Matthias R Benz, Kathleen Ruchalski","doi":"10.1148/rycan.230164","DOIUrl":"10.1148/rycan.230164","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230164"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution 31P MR Spectroscopic Imaging at 7.0 T. 利用 7.0 T 的高分辨率 31P MR 光谱成像绘制胶质瘤的全脑细胞内 pH 图。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.220127
Daniel Paech, Nina Weckesser, Vanessa L Franke, Johannes Breitling, Steffen Görke, Katerina Deike-Hofmann, Antje Wick, Moritz Scherer, Andreas Unterberg, Wolfgang Wick, Martin Bendszus, Peter Bachert, Mark E Ladd, Heinz-Peter Schlemmer, Andreas Korzowski
{"title":"Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution <sup>31</sup>P MR Spectroscopic Imaging at 7.0 T.","authors":"Daniel Paech, Nina Weckesser, Vanessa L Franke, Johannes Breitling, Steffen Görke, Katerina Deike-Hofmann, Antje Wick, Moritz Scherer, Andreas Unterberg, Wolfgang Wick, Martin Bendszus, Peter Bachert, Mark E Ladd, Heinz-Peter Schlemmer, Andreas Korzowski","doi":"10.1148/rycan.220127","DOIUrl":"10.1148/rycan.220127","url":null,"abstract":"<p><p>Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pH<sub>i</sub>). In this prospective study, pH<sub>i</sub> values in gliomas were quantified using high-resolution phosphorous 31 (<sup>31</sup>P) spectroscopic MRI at 7.0 T and were used to correlate pH<sub>i</sub> alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The <sup>31</sup>P spectroscopic MRI scans were acquired using a double-resonant <sup>31</sup>P/<sup>1</sup>H phased-array head coil together with a three-dimensional (3D) <sup>31</sup>P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pH<sub>i</sub> values were compared. Spearman correlation was used to assess association between pH<sub>i</sub> and the proliferation index Ki-67. For all study participants, mean pH<sub>i</sub> values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; <i>P</i> < .001). In eight participants with high-grade gliomas, pH<sub>i</sub> was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all <i>P</i> < .01). The pH<sub>i</sub> values of WTV positively correlated with Ki-67 (<i>R</i><sup>2</sup> = 0.74, <i>r</i> = 0.78, <i>P</i> = .001). In conclusion, <sup>31</sup>P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pH<sub>i</sub> in gliomas, with pH<sub>i</sub> alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. <b>Keywords:</b> <sup>31</sup>P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e220127"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Clinical Decision-Making: The Impact of Liver Contrast-enhanced MRI on Local Treatment Plans for Colorectal Liver Metastases. 加强临床决策:肝脏对比增强 MRI 对结直肠癌肝转移局部治疗方案的影响。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.239023
Yuan-Mao Lin
{"title":"Enhancing Clinical Decision-Making: The Impact of Liver Contrast-enhanced MRI on Local Treatment Plans for Colorectal Liver Metastases.","authors":"Yuan-Mao Lin","doi":"10.1148/rycan.239023","DOIUrl":"10.1148/rycan.239023","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e239023"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Intensity Focused Ultrasound Surgery for Tumor Ablation: A Review of Current Applications. 用于肿瘤消融的高强度聚焦超声手术:当前应用综述。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230074
Alessandro De Maio, Giulia Alfieri, Monica Mattone, Pejman Ghanouni, Alessandro Napoli
{"title":"High-Intensity Focused Ultrasound Surgery for Tumor Ablation: A Review of Current Applications.","authors":"Alessandro De Maio, Giulia Alfieri, Monica Mattone, Pejman Ghanouni, Alessandro Napoli","doi":"10.1148/rycan.230074","DOIUrl":"10.1148/rycan.230074","url":null,"abstract":"<p><p>The management of cancer with alternative approaches is a matter of clinical interest worldwide. High-intensity focused ultrasound (HIFU) surgery is a noninvasive technique performed under US or MRI guidance. The most studied therapeutic uses of HIFU involve thermal tissue ablation, demonstrating both palliative and curative potential. However, concurrent mechanical bioeffects also provide opportunities in terms of augmented drug delivery and immunosensitization. The safety and efficacy of HIFU integration with current cancer treatment strategies are being actively investigated in managing primary and secondary tumors, including cancers of the breast, prostate, pancreas, liver, kidney, and bone. Current primary HIFU indications are pain palliation, complete ablation of localized earlystage tumors, or debulking of unresectable late-stage cancers. This review presents the latest HIFU applications, from investigational to clinically approved, in the field of tumor ablation. <b>Keywords:</b> Ultrasound, Ultrasound-High Intensity Focused (HIFU), Interventional-MSK, Interventional-Body, Oncology, Technology Assessment, Tumor Response, MR Imaging © RSNA, 2023.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230074"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of Data Representation in Health Care Innovation. 数据表示对医疗保健创新的影响。
IF 5.6
Radiology. Imaging cancer Pub Date : 2024-01-01 DOI: 10.1148/rycan.230222
Randy C Miles, Antonio R Porras
{"title":"Implications of Data Representation in Health Care Innovation.","authors":"Randy C Miles, Antonio R Porras","doi":"10.1148/rycan.230222","DOIUrl":"10.1148/rycan.230222","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230222"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信