Maryam Tabatabaei Anaraki , Daniel H. Lysak , Katelyn Downey , Flávio Vinicius Crizóstomo Kock , Xiang You , Rudraksha D. Majumdar , Andersson Barison , Luciano Morais Lião , Antonio Gilberto Ferreira , Venita Decker , Benjamin Goerling , Manfred Spraul , Markus Godejohann , Paul A. Helm , Sonya Kleywegt , Karl Jobst , Ronald Soong , Myrna J. Simpson , Andre J. Simpson
{"title":"NMR spectroscopy of wastewater: A review, case study, and future potential","authors":"Maryam Tabatabaei Anaraki , Daniel H. Lysak , Katelyn Downey , Flávio Vinicius Crizóstomo Kock , Xiang You , Rudraksha D. Majumdar , Andersson Barison , Luciano Morais Lião , Antonio Gilberto Ferreira , Venita Decker , Benjamin Goerling , Manfred Spraul , Markus Godejohann , Paul A. Helm , Sonya Kleywegt , Karl Jobst , Ronald Soong , Myrna J. Simpson , Andre J. Simpson","doi":"10.1016/j.pnmrs.2021.08.001","DOIUrl":"10.1016/j.pnmrs.2021.08.001","url":null,"abstract":"<div><p>NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet’s water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (<sup>13</sup>C, <sup>15</sup>N, <sup>19</sup>F, <sup>31</sup>P, <sup>29</sup>Si) as well as other environmentally relevant nuclei and metals such as <sup>27</sup>Al, <sup>51</sup>V, <sup>207</sup>Pb and <sup>113</sup>Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with <em>in vivo</em> based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both waste","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"126 ","pages":"Pages 121-180"},"PeriodicalIF":6.1,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39795721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asif Equbal , Sheetal Kumar Jain , Yuanxin Li , Kan Tagami , Xiaoling Wang , Songi Han
{"title":"Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization","authors":"Asif Equbal , Sheetal Kumar Jain , Yuanxin Li , Kan Tagami , Xiaoling Wang , Songi Han","doi":"10.1016/j.pnmrs.2021.05.003","DOIUrl":"10.1016/j.pnmrs.2021.05.003","url":null,"abstract":"<div><p>Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain “smart” microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"126 ","pages":"Pages 1-16"},"PeriodicalIF":6.1,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.05.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39950895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stuart J. Elliott, Quentin Stern, Morgan Ceillier, Théo El Daraï, Samuel F. Cousin, Olivier Cala, Sami Jannin
{"title":"Practical dissolution dynamic nuclear polarization","authors":"Stuart J. Elliott, Quentin Stern, Morgan Ceillier, Théo El Daraï, Samuel F. Cousin, Olivier Cala, Sami Jannin","doi":"10.1016/j.pnmrs.2021.04.002","DOIUrl":"10.1016/j.pnmrs.2021.04.002","url":null,"abstract":"<div><p>This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"126 ","pages":"Pages 59-100"},"PeriodicalIF":6.1,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.04.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39796123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ville-Veikko Telkki , Mateusz Urbańczyk , Vladimir Zhivonitko
{"title":"Ultrafast methods for relaxation and diffusion","authors":"Ville-Veikko Telkki , Mateusz Urbańczyk , Vladimir Zhivonitko","doi":"10.1016/j.pnmrs.2021.07.001","DOIUrl":"10.1016/j.pnmrs.2021.07.001","url":null,"abstract":"<div><p>Relaxation and diffusion NMR measurements offer an approach to studying rotational and translational motion of molecules non-invasively, and they also provide chemical resolution complementary to NMR spectra. Multidimensional experiments enable the correlation of relaxation and diffusion parameters as well as the observation of molecular exchange phenomena through relaxation or diffusion contrast. This review describes how to accelerate multidimensional relaxation and diffusion measurements significantly through spatial encoding. This so-called ultrafast Laplace NMR approach shortens the experiment time to a fraction and makes even single-scan experiments possible. Single-scan experiments, in turn, significantly facilitate the use of nuclear spin hyperpolarization methods to boost sensitivity. The ultrafast Laplace NMR method is also applicable with low-field, mobile NMR instruments, and it can be exploited in many disciplines. For example, it has been used in studies of the dynamics of fluids in porous materials, identification of intra- and extracellular metabolites in cancer cells, and elucidation of aggregation phenomena in atmospheric surfactant solutions.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"126 ","pages":"Pages 101-120"},"PeriodicalIF":6.1,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079656521000248/pdfft?md5=a9bd04b2238753e78c9da82fd3eadc43&pid=1-s2.0-S0079656521000248-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39950896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ēriks Kupče , Kaustubh R. Mote , Andrew Webb , Perunthiruthy K. Madhu , Tim D.W. Claridge
{"title":"Multiplexing experiments in NMR and multi-nuclear MRI","authors":"Ēriks Kupče , Kaustubh R. Mote , Andrew Webb , Perunthiruthy K. Madhu , Tim D.W. Claridge","doi":"10.1016/j.pnmrs.2021.03.001","DOIUrl":"10.1016/j.pnmrs.2021.03.001","url":null,"abstract":"<div><p>Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"124 ","pages":"Pages 1-56"},"PeriodicalIF":6.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39382270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giacomo Parigi, Enrico Ravera, Marco Fragai, Claudio Luchinat
{"title":"Unveiling protein dynamics in solution with field-cycling NMR relaxometry","authors":"Giacomo Parigi, Enrico Ravera, Marco Fragai, Claudio Luchinat","doi":"10.1016/j.pnmrs.2021.05.001","DOIUrl":"10.1016/j.pnmrs.2021.05.001","url":null,"abstract":"<div><p><span>Field-cycling NMR relaxometry is a well-established technique that can give information on molecular structure and dynamics of biological systems. It provides the nuclear relaxation rates as a function of the applied magnetic field, starting from fields as low as ~ 10</span><sup>−4</sup> T up to about 1–3 T. The profiles so collected, called nuclear magnetic relaxation dispersion (NMRD) profiles, can be extended to include the relaxation rates at the largest fields achievable with high resolution NMR spectrometers. By exploiting this wide range of frequencies, the NMRD profiles can provide information on motions occurring on time scales from 10<sup>−6</sup> to 10<sup>−9</sup> s. <sup>1</sup><span>H NMRD measurements have proved very useful also for the characterization of paramagnetic proteins, because they can help characterise a number of parameters including the number, distance and residence time of water molecules coordinated to the paramagnetic center<span>, the reorientation correlation times and the electron spin relaxation time, and the electronic structure at the metal site.</span></span></p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"124 ","pages":"Pages 85-98"},"PeriodicalIF":6.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39382274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Swelling layered minerals applications: A solid state NMR overview","authors":"Esperanza Pavón , María D. Alba","doi":"10.1016/j.pnmrs.2021.04.001","DOIUrl":"10.1016/j.pnmrs.2021.04.001","url":null,"abstract":"<div><p>Swelling layered clay minerals form an important sub-group of the phyllosilicate family. They are characterized by their ability to expand or contract in the presence or absence of water. This property makes them useful for a variety of applications, ranging from environmental technologies to heterogeneous catalysis, and including pharmaceutical and industrial applications. Solid State Nuclear Magnetic Resonance (SS-NMR) has been extensively applied in the characterization of these materials, providing useful information on their dynamics and structure that is inaccessible using other characterization methods such as X-ray diffraction. In this review, we present the key contributions of SS-NMR to the understanding of the mechanisms that govern some of the main applications associated to swelling clay minerals. The article is divided in two parts. The first part presents SS-NMR conventional applications to layered clay minerals, while the second part comprises an in-depth review of the information that SS-NMR can provide about the different properties of swelling layered clay minerals.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"124 ","pages":"Pages 99-128"},"PeriodicalIF":6.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.04.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39382275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander C. Forse , Céline Merlet , Clare P. Grey , John M. Griffin
{"title":"NMR studies of adsorption and diffusion in porous carbonaceous materials","authors":"Alexander C. Forse , Céline Merlet , Clare P. Grey , John M. Griffin","doi":"10.1016/j.pnmrs.2021.03.003","DOIUrl":"10.1016/j.pnmrs.2021.03.003","url":null,"abstract":"<div><p>Porous carbonaceous materials have many important industrial applications including energy storage, water purification, and adsorption of volatile organic compounds. Most of their applications rely upon the adsorption of molecules or ions within the interior pore volume of the carbon particles. Understanding the behaviour and properties of adsorbate species on the molecular level is therefore key for optimising porous carbon materials, but this is very challenging owing to the complexity of the disordered carbon structure and the presence of multiple phases in the system. In recent years, NMR spectroscopy has emerged as one of the few experimental techniques that can resolve adsorbed species from those outside the pore network. Adsorbed, or “in-pore” species are shielded with respect to their free (or “ex-pore”) counterparts. This shielding effect arises primarily due to ring currents in the carbon structure in the presence of a magnetic field, such that the observed chemical shift differences upon adsorption are independent of the observed nucleus to a first approximation. Theoretical modelling has played an important role in rationalising and explaining these experimental observations. Together, experiments and simulations have enabled a large amount of information to be gained on the adsorption and diffusion of adsorbed species, as well as on the structural and magnetic properties of the porous carbon adsorbent. Here, we review the methodological developments and applications of NMR spectroscopy and related modelling in this field, and provide perspectives on possible future applications and research directions.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"124 ","pages":"Pages 57-84"},"PeriodicalIF":6.1,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.03.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39382272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emil Ljungberg , Nikou L. Damestani , Tobias C. Wood , David J. Lythgoe , Fernando Zelaya , Steven C.R. Williams , Ana Beatriz Solana , Gareth J. Barker , Florian Wiesinger
{"title":"Silent zero TE MR neuroimaging: Current state-of-the-art and future directions","authors":"Emil Ljungberg , Nikou L. Damestani , Tobias C. Wood , David J. Lythgoe , Fernando Zelaya , Steven C.R. Williams , Ana Beatriz Solana , Gareth J. Barker , Florian Wiesinger","doi":"10.1016/j.pnmrs.2021.03.002","DOIUrl":"10.1016/j.pnmrs.2021.03.002","url":null,"abstract":"<div><p>Magnetic Resonance Imaging (MRI) scanners produce loud acoustic noise originating from vibrational Lorentz forces induced by rapidly changing currents in the magnetic field gradient coils. Using zero echo time (ZTE) MRI pulse sequences, gradient switching can be reduced to a minimum, which enables near silent operation.<!--> <!-->Besides silent MRI, ZTE offers further interesting characteristics, including a nominal echo time of TE = 0 (thus capturing short-lived signals from MR tissues which are otherwise MR-invisible), 3D radial sampling (providing motion robustness), and ultra-short repetition times (providing fast and efficient scanning).<!--> <!-->In this work we describe the main concepts behind ZTE imaging with a focus on conceptual understanding of the imaging sequences, relevant acquisition parameters, commonly observed image artefacts, and image contrasts. We will further describe a range of methods for anatomical and functional neuroimaging, together with recommendations for successful implementation.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"123 ","pages":"Pages 73-93"},"PeriodicalIF":6.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.03.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39054985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-crystal NMR spectroscopy","authors":"Thomas Vosegaard","doi":"10.1016/j.pnmrs.2021.01.001","DOIUrl":"10.1016/j.pnmrs.2021.01.001","url":null,"abstract":"<div><p>Single-crystal (SC) NMR spectroscopy is a solid-state NMR method that has been used since the early days of NMR to study the magnitude and orientation of tensorial nuclear spin interactions in solids. This review first presents the field of SC NMR instrumentation, then provides a survey of software for analysis of SC NMR data, and finally it highlights selected applications of SC NMR in various fields of research. The aim of the last part is not to provide a complete review of all SC NMR literature but to provide examples that demonstrate interesting applications of SC NMR.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"123 ","pages":"Pages 51-72"},"PeriodicalIF":6.1,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39054984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}