Progress in Electromagnetics Research C最新文献

筛选
英文 中文
Design and Performance Analysis of Millimetre-Wave Rotman Lens-Based Array Beamforming Networks for Large-Scale Antenna Subsystems 基于毫米波Rotman透镜的大型天线子系统阵列波束形成网络的设计与性能分析
Progress in Electromagnetics Research C Pub Date : 2017-10-11 DOI: 10.2528/PIERC17071703
A. Rahimian, Y. Alfadhl, A. Alomainy
{"title":"Design and Performance Analysis of Millimetre-Wave Rotman Lens-Based Array Beamforming Networks for Large-Scale Antenna Subsystems","authors":"A. Rahimian, Y. Alfadhl, A. Alomainy","doi":"10.2528/PIERC17071703","DOIUrl":"https://doi.org/10.2528/PIERC17071703","url":null,"abstract":"This paper presents the comprehensive analytical design and numerical performance evaluation of novel millimetre-wave (mm-wave) switched-beam networks, based on the Rotman lens (RL) array feeding concept. These passive array devices have been designed for operation in the 28GHz frequency band, covering the whole 18–38 GHz frequency range. The primary objective of the work is to conduct a thorough feasibility study of designing wideband mm-wave beamformers based on liquid-crystal polymer (LCP) substrates, to be potentially employed as low-cost and high-performance subsystems for the advanced transceiver units and large-scale antennas. The presented RLs exhibit significant output behaviours for electronic beam steering, in terms of the scattering (S) parameters, phase characteristics, and surface current distributions, as the feeding systems’ primary functionality indicators.","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERC17071703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47808788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A 2.45 GHz ISM Band CPW Rectenna for Low Power Levels 一种用于低功耗的2.45 GHz ISM波段CPW整流天线
Progress in Electromagnetics Research C Pub Date : 2017-08-27 DOI: 10.2528/PIERC17070401
J. Rivière, A. Douyère, S. Oree, A. Luk
{"title":"A 2.45 GHz ISM Band CPW Rectenna for Low Power Levels","authors":"J. Rivière, A. Douyère, S. Oree, A. Luk","doi":"10.2528/PIERC17070401","DOIUrl":"https://doi.org/10.2528/PIERC17070401","url":null,"abstract":"This paper presents the design and fabrication of a coplanar waveguide (CPW) rectenna using a sequential modular approach. The rectenna is printed on high permittivity, low-loss board ARLON AD1000 (r = 10.35 and tan δ = 0.0023 @ 10 GHz). The rectifier section is realized with a single reverse-biased schottky diode SMS-7630 in reverse topology for which a diode model is obtained at −20 dBm for frequencies F 0 = 2.45 GHz and 2F 0 = 4.9 GHz. The low-pass filter and the impedance matching are synthesized from passive CPW structures. Co-simulation technique is used to overcome CPW simulation limitations and to integrate the diode characteristics. The antenna consists of a circular slot loop antenna with stub matching such that its input impedance is close to 50 Ω. The goal of this work is to design a rectifier to simplify and speed up the fabrication process of a rectenna array. We reduced the number of processes to etch the rectifier on the board and minimized the number of lumped elements. At −20 dBm, simulation of the rectifier with an ideal impedance matching network shows rectification at 2.45 GHz with efficiency of 12.8%. The rectifier and rectenna show efficiency of approximately 10% at an operating frequency of 2.48 GHz.","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERC17070401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47337911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Wideband Metamaterial Solar Cell Antenna for 5 GHz Wi-Fi Communication 用于5GHz Wi-Fi通信的宽带超材料太阳能电池天线
Progress in Electromagnetics Research C Pub Date : 2017-03-08 DOI: 10.2528/PIERC16110302
M. Elsdon, O. Yurduseven, X. Dai
{"title":"Wideband Metamaterial Solar Cell Antenna for 5 GHz Wi-Fi Communication","authors":"M. Elsdon, O. Yurduseven, X. Dai","doi":"10.2528/PIERC16110302","DOIUrl":"https://doi.org/10.2528/PIERC16110302","url":null,"abstract":"In this paper, a novel design for a wideband integrated photovoltaic (PV) solar cell patch antenna for 5 GHz Wi-Fi communication is presented and discussed. The design consists of a slot loaded patch antenna with an array of complimentary split ring resonators (cSRR) etched in the ground plane. This is then integrated with a solar cell element placed above the patch, where the ground plane of the solar cell acts as a stacked antenna element from an RF perspective. The design is simulated on CST Microwave Studio and fabricated. The results indicate that an impedance bandwidth of 1 GHz is achieved to cover the 5 GHz Wi-Fi band with a gain of between 7.73 dBi and 8.18 dBi across this band. It is also demonstrated that size reduction of up to 25% can be achieved. Moreover, it is noted that using a metamaterial loaded ground plane acts as an impedance transformer, therefore the antenna can be fed directly with a 50 Ω microstrip feed line, hence further reducing the overall size.","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERC16110302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47767460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments. 隧道/采矿环境的时域和频域确定性信道建模。
Progress in Electromagnetics Research C Pub Date : 2017-01-01 DOI: 10.2528/PIERC17082907
Chenming Zhou, Ronald Jacksha, Lincan Yan, Miguel Reyes, Peter Kovalchik
{"title":"Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.","authors":"Chenming Zhou, Ronald Jacksha, Lincan Yan, Miguel Reyes, Peter Kovalchik","doi":"10.2528/PIERC17082907","DOIUrl":"10.2528/PIERC17082907","url":null,"abstract":"<p><p>Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.</p>","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERC17082907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35844490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信