Beniamino Accattoli, E. Bonelli, D. Kesner, Carlos Lombardi
{"title":"A nonstandard standardization theorem","authors":"Beniamino Accattoli, E. Bonelli, D. Kesner, Carlos Lombardi","doi":"10.1145/2535838.2535886","DOIUrl":"https://doi.org/10.1145/2535838.2535886","url":null,"abstract":"Standardization is a fundamental notion for connecting programming languages and rewriting calculi. Since both programming languages and calculi rely on substitution for defining their dynamics, explicit substitutions (ES) help further close the gap between theory and practice. This paper focuses on standardization for the linear substitution calculus, a calculus with ES capable of mimicking reduction in lambda-calculus and linear logic proof-nets. For the latter, proof-nets can be formalized by means of a simple equational theory over the linear substitution calculus. Contrary to other extant calculi with ES, our system can be equipped with a residual theory in the sense of Lévy, which is used to prove a left-to-right standardization theorem for the calculus with ES but without the equational theory. Such a theorem, however, does not lift from the calculus with ES to proof-nets, because the notion of left-to-right derivation is not preserved by the equational theory. We then relax the notion of left-to-right standard derivation, based on a total order on redexes, to a more liberal notion of standard derivation based on partial orders. Our proofs rely on Gonthier, Lévy, and Melliès' axiomatic theory for standardization. However, we go beyond merely applying their framework, revisiting some of its key concepts: we obtain uniqueness (modulo) of standard derivations in an abstract way and we provide a coinductive characterization of their key abstract notion of external redex. This last point is then used to give a simple proof that linear head reduction --a nondeterministic strategy having a central role in the theory of linear logic-- is standard.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72891911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Game semantics for interface middleweight Java","authors":"A. Murawski, N. Tzevelekos","doi":"10.1145/2535838.2535880","DOIUrl":"https://doi.org/10.1145/2535838.2535880","url":null,"abstract":"We consider an object calculus in which open terms interact with the environment through interfaces. The calculus is intended to capture the essence of contextual interactions of Middleweight Java code. Using game semantics, we provide fully abstract models for the induced notions of contextual approximation and equivalence. These are the first denotational models of this kind.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77626236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bias-variance tradeoffs in program analysis","authors":"Rahul Sharma, A. Nori, A. Aiken","doi":"10.1145/2535838.2535853","DOIUrl":"https://doi.org/10.1145/2535838.2535853","url":null,"abstract":"It is often the case that increasing the precision of a program analysis leads to worse results. It is our thesis that this phenomenon is the result of fundamental limits on the ability to use precise abstract domains as the basis for inferring strong invariants of programs. We show that bias-variance tradeoffs, an idea from learning theory, can be used to explain why more precise abstractions do not necessarily lead to better results and also provides practical techniques for coping with such limitations. Learning theory captures precision using a combinatorial quantity called the VC dimension. We compute the VC dimension for different abstractions and report on its usefulness as a precision metric for program analyses. We evaluate cross validation, a technique for addressing bias-variance tradeoffs, on an industrial strength program verification tool called YOGI. The tool produced using cross validation has significantly better running time, finds new defects, and has fewer time-outs than the current production version. Finally, we make some recommendations for tackling bias-variance tradeoffs in program analysis.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86933260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chris Casinghino, Vilhelm Sjöberg, Stephanie Weirich
{"title":"Combining proofs and programs in a dependently typed language","authors":"Chris Casinghino, Vilhelm Sjöberg, Stephanie Weirich","doi":"10.1145/2535838.2535883","DOIUrl":"https://doi.org/10.1145/2535838.2535883","url":null,"abstract":"Most dependently-typed programming languages either require that all expressions terminate (e.g. Coq, Agda, and Epigram), or allow infinite loops but are inconsistent when viewed as logics (e.g. Haskell, ATS, Ωmega. Here, we combine these two approaches into a single dependently-typed core language. The language is composed of two fragments that share a common syntax and overlapping semantics: a logic that guarantees total correctness, and a call-by-value programming language that guarantees type safety but not termination. The two fragments may interact: logical expressions may be used as programs; the logic may soundly reason about potentially nonterminating programs; programs can require logical proofs as arguments; and \"mobile\" program values, including proofs computed at runtime, may be used as evidence by the logic. This language allows programmers to work with total and partial functions uniformly, providing a smooth path from functional programming to dependently-typed programming.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86032532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Bodin, A. Charguéraud, Daniele Filaretti, Philippa Gardner, S. Maffeis, Daiva Naudziuniene, Alan Schmitt, Gareth Smith
{"title":"A trusted mechanised JavaScript specification","authors":"Martin Bodin, A. Charguéraud, Daniele Filaretti, Philippa Gardner, S. Maffeis, Daiva Naudziuniene, Alan Schmitt, Gareth Smith","doi":"10.1145/2535838.2535876","DOIUrl":"https://doi.org/10.1145/2535838.2535876","url":null,"abstract":"JavaScript is the most widely used web language for client-side applications. Whilst the development of JavaScript was initially just led by implementation, there is now increasing momentum behind the ECMA standardisation process. The time is ripe for a formal, mechanised specification of JavaScript, to clarify ambiguities in the ECMA standards, to serve as a trusted reference for high-level language compilation and JavaScript implementations, and to provide a platform for high-assurance proofs of language properties. We present JSCert, a formalisation of the current ECMA standard in the Coq proof assistant, and JSRef, a reference interpreter for JavaScript extracted from Coq to OCaml. We give a Coq proof that JSRef is correct with respect to JSCert and assess JSRef using test262, the ECMA conformance test suite. Our methodology ensures that JSCert is a comparatively accurate formulation of the English standard, which will only improve as time goes on. We have demonstrated that modern techniques of mechanised specification can handle the complexity of JavaScript.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84396998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Counter-factual typing for debugging type errors","authors":"Sheng Chen, Martin Erwig","doi":"10.1145/2535838.2535863","DOIUrl":"https://doi.org/10.1145/2535838.2535863","url":null,"abstract":"Changing a program in response to a type error plays an important part in modern software development. However, the generation of good type error messages remains a problem for highly expressive type systems. Existing approaches often suffer from a lack of precision in locating errors and proposing remedies. Specifically, they either fail to locate the source of the type error consistently, or they report too many potential error locations. Moreover, the change suggestions offered are often incorrect. This makes the debugging process tedious and ineffective. We present an approach to the problem of type debugging that is based on generating and filtering a comprehensive set of type-change suggestions. Specifically, we generate all (program-structure-preserving) type changes that can possibly fix the type error. These suggestions will be ranked and presented to the programmer in an iterative fashion. In some cases we also produce suggestions to change the program. In most situations, this strategy delivers the correct change suggestions quickly, and at the same time never misses any rare suggestions. The computation of the potentially huge set of type-change suggestions is efficient since it is based on a variational type inference algorithm that type checks a program with variations only once, efficiently reusing type information for shared parts. We have evaluated our method and compared it with previous approaches. Based on a large set of examples drawn from the literature, we have found that our method outperforms other approaches and provides a viable alternative.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90193668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sound and complete abstraction for reasoning about parallel prefix sums","authors":"Nathan Chong, A. Donaldson, J. Ketema","doi":"10.1145/2535838.2535882","DOIUrl":"https://doi.org/10.1145/2535838.2535882","url":null,"abstract":"Prefix sums are key building blocks in the implementation of many concurrent software applications, and recently much work has gone into efficiently implementing prefix sums to run on massively parallel graphics processing units (GPUs). Because they lie at the heart of many GPU-accelerated applications, the correctness of prefix sum implementations is of prime importance. We introduce a novel abstraction, the interval of summations, that allows scalable reasoning about implementations of prefix sums. We present this abstraction as a monoid, and prove a soundness and completeness result showing that a generic sequential prefix sum implementation is correct for an array of length $n$ if and only if it computes the correct result for a specific test case when instantiated with the interval of summations monoid. This allows correctness to be established by running a single test where the input and result require O(n lg(n)) space. This improves upon an existing result by Sheeran where the input requires O(n lg(n)) space and the result O(n2 lg(n)) space, and is more feasible for large n than a method by Voigtlaender that uses O(n) space for the input and result but requires running O(n2) tests. We then extend our abstraction and results to the context of data-parallel programs, developing an automated verification method for GPU implementations of prefix sums. Our method uses static verification to prove that a generic prefix sum implementation is data race-free, after which functional correctness of the implementation can be determined by running a single test case under the interval of summations abstraction. We present an experimental evaluation using four different prefix sum algorithms, showing that our method is highly automatic, scales to large thread counts, and significantly outperforms Voigtlaender's method when applied to large arrays.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90374862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Consistency analysis of decision-making programs","authors":"Swarat Chaudhuri, Azadeh Farzan, Zachary Kincaid","doi":"10.1145/2535838.2535858","DOIUrl":"https://doi.org/10.1145/2535838.2535858","url":null,"abstract":"Applications in many areas of computing make discrete decisions under uncertainty, for reasons such as limited numerical precision in calculations and errors in sensor-derived inputs. As a result, individual decisions made by such programs may be nondeterministic, and lead to contradictory decisions at different points of an execution. This means that an otherwise correct program may execute along paths, that it would not follow under its ideal semantics, violating essential program invariants on the way. A program is said to be consistent if it does not suffer from this problem despite uncertainty in decisions. In this paper, we present a sound, automatic program analysis for verifying that a program is consistent in this sense. Our analysis proves that each decision made along a program execution is consistent with the decisions made earlier in the execution. The proof is done by generating an invariant that abstracts the set of all decisions made along executions that end at a program location l, then verifying, using a fixpoint constraint-solver, that no contradiction can be derived when these decisions are combined with new decisions made at l. We evaluate our analysis on a collection of programs implementing algorithms in computational geometry. Consistency is known to be a critical, frequently-violated, and thoroughly studied correctness property in geometry, but ours is the first attempt at automated verification of consistency of geometric algorithms. Our benchmark suite consists of implementations of convex hull computation, triangulation, and point location algorithms. On almost all examples that are not consistent (with two exceptions), our analysis is able to verify consistency within a few minutes.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91392154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward general diagnosis of static errors","authors":"Danfeng Zhang, A. Myers","doi":"10.1145/2535838.2535870","DOIUrl":"https://doi.org/10.1145/2535838.2535870","url":null,"abstract":"We introduce a general way to locate programmer mistakes that are detected by static analyses such as type checking. The program analysis is expressed in a constraint language in which mistakes result in unsatisfiable constraints. Given an unsatisfiable system of constraints, both satisfiable and unsatisfiable constraints are analyzed, to identify the program expressions most likely to be the cause of unsatisfiability. The likelihood of different error explanations is evaluated under the assumption that the programmer's code is mostly correct, so the simplest explanations are chosen, following Bayesian principles. For analyses that rely on programmer-stated assumptions, the diagnosis also identifies assumptions likely to have been omitted. The new error diagnosis approach has been implemented for two very different program analyses: type inference in OCaml and information flow checking in Jif. The effectiveness of the approach is evaluated using previously collected programs containing errors. The results show that when compared to existing compilers and other tools, the general technique identifies the location of programmer errors significantly more accurately.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78973918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Profiling for laziness","authors":"Stephen Chang, M. Felleisen","doi":"10.1145/2535838.2535887","DOIUrl":"https://doi.org/10.1145/2535838.2535887","url":null,"abstract":"While many programmers appreciate the benefits of lazy programming at an abstract level, determining which parts of a concrete program to evaluate lazily poses a significant challenge for most of them. Over the past thirty years, experts have published numerous papers on the problem, but developing this level of expertise requires a significant amount of experience. We present a profiling-based technique that captures and automates this expertise for the insertion of laziness annotations into strict programs. To make this idea precise, we show how to equip a formal semantics with a metric that measures waste in an evaluation. Then we explain how to implement this metric as a dynamic profiling tool that suggests where to insert laziness into a program. Finally, we present evidence that our profiler's suggestions either match or improve on an expert's use of laziness in a range of real-world applications.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86235769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}