Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture最新文献

筛选
英文 中文
Electro-plastic effect in Ti-6Al-4V: An experimental and numerical study Ti-6Al-4V的电塑性效应:实验与数值研究
IF 2.6 3区 工程技术
Subrahmanyam Adabala, P. Konka, Venkata Reddy Nallagundla
{"title":"Electro-plastic effect in Ti-6Al-4V: An experimental and numerical study","authors":"Subrahmanyam Adabala, P. Konka, Venkata Reddy Nallagundla","doi":"10.1177/09544054231193784","DOIUrl":"https://doi.org/10.1177/09544054231193784","url":null,"abstract":"Electric pulse aided deformation is gaining importance in plastic deformation processes because of its ability to form difficult-to-form materials like Ti-6Al-4V at much lower temperatures than hot/superplastic forming processes. Applying electric pulses with suitable parameters during plastic deformation reduces the flow stress near instantaneously (stress-drop) due to thermal (expansion and softening) and electro-plastic effects. To quantify the electro-plastic effect, one needs to predict thermal effects accurately. In the present work, electrically assisted uniaxial tensile tests on Ti-6Al-4V are carried out both in elastic and plastic regions. Flow stress reduction due to thermal effects are predicted using finite element analysis. Comparison of predicted thermal effects with that of experimentally measured in elastic region revealed that they are in excellent agreement, as it is well known that thermal expansion only plays a role in the elastic region. In the plastic region, a considerable difference between measured (thermal and athermal) and predicted (only thermal effects) stress-drop values is observed, and this difference is due to the electro-plastic effect. The effect of different process parameters on electro-plastic effect is studied, and the same is quantified.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"1 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87379008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular dynamics simulation and experimental study on formation mechanism of micro-hole and cracks in nano-imprinting diamond 纳米压印金刚石微孔、裂纹形成机理的分子动力学模拟与实验研究
IF 2.6 3区 工程技术
J. Che, G. Shi, S. Meng, Chunyang Zou, Dong Yao, Guohua Cao
{"title":"Molecular dynamics simulation and experimental study on formation mechanism of micro-hole and cracks in nano-imprinting diamond","authors":"J. Che, G. Shi, S. Meng, Chunyang Zou, Dong Yao, Guohua Cao","doi":"10.1177/09544054231191639","DOIUrl":"https://doi.org/10.1177/09544054231191639","url":null,"abstract":"Diamond nano-imprint microhole forming technology is a new type of microhole forming method. However, there will always be some unqualified microholes and cracks in the manufacture of microholes. In order to obtain better microhole quality, it is crucial to study the mechanism of microhole formation. In this paper, the indentation process of single crystal copper by a conical indenter is simulated by molecular dynamics. After the indentation is completed, microholes and cracks will form on the surface of the copper sheet. Dislocation analysis will be conducted on the microholes and surrounding cracks, and then the microstructure and morphology will be demonstrated to explain the formation mechanism of microholes and cracks. The influence of different indentation speeds and temperatures on the energy change of the system is discussed. In addition, this article established an experimental device for diamond indentation of copper sheets, and conducted indentation microholes experiments to observe microholes and cracks through scanning electron microscopy. The results show that when the diamond indenter is pressed down, the number of atoms in contact between the diamond indenter particles and the copper surface gradually increases, causing local stress concentration and the formation of new dislocations. Among them, 1/6<112> shockley dislocation is the main dislocation type. When the strain energy stored in the lattice increases beyond a certain value, the lattice structure of the copper atoms in the contact area is broken, resulting in internal defects, gradually forming microholes and surrounding cracks. The increase in the imprinting speed will accelerate the plastic deformation of the copper sheet. This paper reveals the mechanism of the formation of microholes and cracks, laying the foundation for high-quality micropore manufacturing.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"119 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86261174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of local features on twist springback of high-strength steel long channels 局部特征对高强钢长槽钢扭转回弹的影响
IF 2.6 3区 工程技术
Maoyang Li, Rui Wang, Q. Pang, Chao Niu, Xiang Liu, Zhili Hu
{"title":"Influence of local features on twist springback of high-strength steel long channels","authors":"Maoyang Li, Rui Wang, Q. Pang, Chao Niu, Xiang Liu, Zhili Hu","doi":"10.1177/09544054231191913","DOIUrl":"https://doi.org/10.1177/09544054231191913","url":null,"abstract":"With the wide use of high-strength steel (HSS) in structural body parts, the twist springback of high-strength steel parts has received extensive attention. Unlike automotive panels, structural body parts are arranged with many local features to meet functional requirements. The aim of this study is to investigate the influence of local features on twist springback to optimize the design of local features to reduce twist springback. In this paper, a typical long channel part (A-pillar upper inner plate) is taken as the object of study. A suitable location division method for this type of part is proposed to investigate the changes in twist springback and cross-sectional stresses in the part before and after the addition of local features at different locations through finite element simulations. The results show that the local features affect the stiffness and stress distribution of the parts and significantly affect the twist springback of the parts. Finally, the research results guided the optimization of the local feature design of an A-pillar upper inner plate, resulting in a remarkable 37% and 61% decrease in twist springback at the left and right ends of the optimized part, respectively. In addition, stamping molds were developed for optimized parts, and experiments were carried out to verify the effectiveness of the law and the reliability of the finite element model.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"17 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86304672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of reaction forces in fixture locating points: An Analytical, numerical, and experimental study 夹具定位点反作用力分析:解析、数值和实验研究
IF 2.6 3区 工程技术
H. Parvaz, S. Hosseini
{"title":"Analysis of reaction forces in fixture locating points: An Analytical, numerical, and experimental study","authors":"H. Parvaz, S. Hosseini","doi":"10.1177/09544054231190746","DOIUrl":"https://doi.org/10.1177/09544054231190746","url":null,"abstract":"Reaction forces are important parameters in fixture design. They are generated by the clamping forces and machining loads at the fixture locating points. These forces are used as input values in the determination of clamping forces, fixture stiffness, and workpiece deformation. In this paper, an analytical model based on the minimum norm principle was developed to calculate these forces. Numerical simulations and experimental tests were performed on a 3D polyhedral workpiece to validate the model. The simulations were conducted using Abaqus® software and the experimental tests used a fixture and a 3D polyhedral workpiece. The theoretical, numerical, and experimental results showed good agreement for the normal component of reaction forces. The maximum errors of 3.9% and 15% were observed between the theoretical predictions compared to the numerical and experimental results, respectively. The model was also used to study the effects of two influential parameters, the coefficient of friction and clamping force, on the reaction forces. The good agreement between the theoretical, numerical, and experimental results demonstrated the efficiency of the proposed model in the rapid calculation of reaction forces for fixturing 3D polyhedral workpieces.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"17 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88640158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and multi-objective optimization of abrasive water jet machining process of composite laminates using a hybrid approach based on neural networks and metaheuristic algorithm 基于神经网络和元启发式算法的复合材料层合板磨料水射流加工过程建模与多目标优化
IF 2.6 3区 工程技术
Faten Chaouch, Ated Ben Khalifa, R. Zitoune, M. Zidi
{"title":"Modeling and multi-objective optimization of abrasive water jet machining process of composite laminates using a hybrid approach based on neural networks and metaheuristic algorithm","authors":"Faten Chaouch, Ated Ben Khalifa, R. Zitoune, M. Zidi","doi":"10.1177/09544054231191816","DOIUrl":"https://doi.org/10.1177/09544054231191816","url":null,"abstract":"Although the abrasive water jet (AWJ) has proven to be a suitable process for machining composite materials, it has some limitations related to dimensional inaccuracy and surface defects. As the performance of the AWJ process mainly depends on the machining parameters, an optimal selection of them is crucial to achieving an improved quality of cut. In this context, the present study reports an experimental investigation to assess the influence of AWJ machining parameters on kerf taper angle (θ) and surface roughness ( Ra) of E glass/Vinylester 411 resin laminates. The experiments are carried out using a full factorial design by varying the water pressure, traverse speed, abrasive flow rate, and standoff distance. A first-ever attempt is made in this paper to optimize the AWJ process using a hybrid approach combining artificial neural networks (ANNs) with a recently proposed metaheuristic algorithm known as multi-objective bonobo optimizer (MOBO). The results show that standoff distance and abrasive flow rate were the most significant control factors in influencing θ and Ra, respectively. The developed ANN models are capable to predict the output responses with high accuracy and the solutions from the Pareto front provide a sufficient performance with a trade-off between θ and Ra. The corresponding levels of the optimal process parameters are 430 g/min for the abrasive flow rate, the range of 140–180 mm/min for the traverse speed, 280 MPa for the pressure, and 1.5 mm for the standoff distance.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"30 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83113160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis on mechanical and machinability attributes of Al6061-B4C-T6 composites processed via hot extrusion 热挤压Al6061-B4C-T6复合材料力学性能和切削性能分析
IF 2.6 3区 工程技术
Sibel Tinga, Halil Karakoç, S. Yağmur, M. Saravana Kumar, U. Şeker, R. Çıtak
{"title":"Performance analysis on mechanical and machinability attributes of Al6061-B4C-T6 composites processed via hot extrusion","authors":"Sibel Tinga, Halil Karakoç, S. Yağmur, M. Saravana Kumar, U. Şeker, R. Çıtak","doi":"10.1177/09544054231191634","DOIUrl":"https://doi.org/10.1177/09544054231191634","url":null,"abstract":"In this study, composite materials with Al6061 alloy matrix and B4C particles reinforcement were produced by hot extrusion process. Fabricated composites were examined for the mechanical and machinability attributes. Al6061 alloy powders (<100 µm) and B4C particles (<10 µm) were mixed with the different weight fraction of B4C (3%, 6%, and 9% by weight) of and then cold pressed under 200 MPa pressure. The cold pressed powder metal block was extruded hot after preheating at 550°C for 1 h. Further, the composites were subjected to T6 aging heat treatment after hot extrusion. Microstructure, density, hardness, tensile strength, and wear properties were examined. The effects of cutting speed and cutting force on the machinability were also investigated. In addition, surface roughness and chips formation were examined. High density (99.6%) values were achieved with the extrusion process. With increasing B4C particles ratio, the hardness and tensile values were increased which was substantiated by the fracture morphology of the tensile specimens. It has been observed that tool smearing was high in the machining of the low-reinforced (3% B4C) composite. The highest cutting force was measured as 236 N at a feed rate of 0.27 mm/rev and a cutting speed of 250 m/min. It has also been observed that the average surface roughness decreased with increasing cutting speed and it increased with increasing feed rate.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"74 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74270300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machinability improvement of titanium alloys in ultra-precision machining with micro-structured surface 钛合金微结构表面超精密加工可加工性的改善
IF 2.6 3区 工程技术
Sujuan Wang, Liangbao Yu, Qin Chao, Zhanwen Sun
{"title":"Machinability improvement of titanium alloys in ultra-precision machining with micro-structured surface","authors":"Sujuan Wang, Liangbao Yu, Qin Chao, Zhanwen Sun","doi":"10.1177/09544054231191646","DOIUrl":"https://doi.org/10.1177/09544054231191646","url":null,"abstract":"Titanium alloys get wider applications in different areas due to its excellent mechanical properties. However, poor thermal conductivity and low elastic module of titanium alloy induce high tool wear and make it being one of hard-to-machine materials; especially the segmented chip formation accelerates the diamond tool wear in ultra-precision machining (UPM) of precision parts. This study applies micro-structured surface to improve machinability of titanium alloys in UPM by reducing the chip segmentation induced cutting forces fluctuations. Finite element (FE) model is built to study chip formation mechanism and characterize geometries of segmented chips in orthogonal diamond cutting of Ti6Al4V alloy with the aims at the design of micro-structures array. Turning experiments are conducted to compare cutting force, surface roughness, and tool wear for diamond turning of Ti6Al4V alloy on smooth surface and micro-structured surface. The results show that the FE simulated saw chips agree well with the measured ones. Moreover, the micro-structured surface helps to decrease cutting force, reduce diamond tool wear, and improve surface quality for UPM of titanium alloy. Especially, the new method fabricates micro-grooves array on the machined surface in half-finishing process of UPM without the need of any material pre-processing and extra manufacturing equipment, which can also provide the guidance for efficient and sustainable UPM of titanium alloys parts with high surface quality.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"4 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82410397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of milling parameters on machinability of SA508-3 steel in high-speed milling with uncoated and coated carbide tools 铣削参数对SA508-3钢非涂层和涂层硬质合金刀具高速铣削可加工性的影响
IF 2.6 3区 工程技术
Qinqiang Wang, Yong Zhao, Xu Zhu, Jinlong Zhang, Zhaocheng Wei, Zhuji Jin, Bin Xu, Jiang Guo
{"title":"Effect of milling parameters on machinability of SA508-3 steel in high-speed milling with uncoated and coated carbide tools","authors":"Qinqiang Wang, Yong Zhao, Xu Zhu, Jinlong Zhang, Zhaocheng Wei, Zhuji Jin, Bin Xu, Jiang Guo","doi":"10.1177/09544054231189604","DOIUrl":"https://doi.org/10.1177/09544054231189604","url":null,"abstract":"SA508-3 steel is popularly used to produce core unit of nuclear power reactors due to its outstanding ability of anti-neutron irradiation and good fracture toughness. Additive forging is a new technology for manufacturing SA508-3 steel forgings. However, the production efficiency and interface bonding quality of heavy forgings are respectively limited by the processing efficiency and surface quality of substrates in the additive forging process. High-speed milling technology is an effective method for improving machining efficiency and quality. Unfortunately, only a few studies on the milling of SA508-3 steel have been reported. In this study, we studied high-speed milling of SA508-3 steel and compared the cutting performances of uncoated, titanium aluminum nitride (TiAlN)-coated, and Al2O3-coated carbide tools. The tool life and cutting force were evaluated using various milling parameters under dry milling conditions. The wear modes and mechanisms were also investigated. The results show that adhesive wear occurs more frequently in the uncoated carbide tool, whereas coating flaking is predominant in the Al2O3- and TiAlN-coated carbide tools. Furthermore, the Al2O3-coated carbide tool showed better cutting performance than the TiAlN-coated and uncoated carbide tools considering the tool life and surface quality. The tool life of the Al2O3-coated carbide tool reached 200 min and the removed workpiece material was 182 × 103 mm3 under the blunt tool criteria. The study of tool life and wear behavior based on the practical cutting experiments contribute to the improvement of the milling quality and provides a theoretical basis for tool material selection and process optimization in milling SA508-3 steel.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"30 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85930899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of rotary ultrasonic high-quality hole processing of Glass Fiber Reinforced Plastic with a new diamond trepanning bit 新型金刚石钻孔钻头旋转超声加工玻璃钢高质量孔的试验研究
IF 2.6 3区 工程技术
Lei Zheng, Ziwen Liu, Xianglong Dong, Wendong Wei, Xiaohan Sun, Zhuozhi Zhu, Ruiyu Jiang
{"title":"Experimental study of rotary ultrasonic high-quality hole processing of Glass Fiber Reinforced Plastic with a new diamond trepanning bit","authors":"Lei Zheng, Ziwen Liu, Xianglong Dong, Wendong Wei, Xiaohan Sun, Zhuozhi Zhu, Ruiyu Jiang","doi":"10.1177/09544054231190946","DOIUrl":"https://doi.org/10.1177/09544054231190946","url":null,"abstract":"Glass Fiber Reinforced Plastic is widely used in manufacturing and other fields because of its high specific strength and high specific modulus. Since the workpiece requires secondary hole processing during assembly, machining defects are prone to occur during hole making, which seriously affects the service life of the workpiece. A novel type of thin-walled diamond trepanning bit was fabricated and combined with ultrasonic processing technology to conduct a pilot study on hole processing. Compared with conventional twist drill hole processing, the novel diamond trepanning bit grinding hole-making method can significantly reduce the axial force when drilling, and effectively reduce the delamination and tearing damage at the exit of the hole, so that the delamination ratio at the exit is reduced by 9.6%. Combined with ultrasonic machining technology, hole machining experiments were carried out, and the results showed that: spindle speed increase or feed rate reduction can make axial force, hole wall surface roughness, and exit delamination damage all show a decreasing trend. Compared with conventional machining, the rotary ultrasonic hole machining technology can effectively reduce the axial force by 20.1% and effectively reduce the exit delamination problem by 7.3% in the delamination ratio. At the same time, considering the hole-making quality and efficiency, rotary ultrasonic processing can better reflect the advantages of the process and obtain better hole-making quality at the speed of 3000–4000 r/min and the feed rate of 14–20 mm/min. The above research can provide theoretical and technical support for the hole processing problems of Fiber Reinforced Plastic, which has important engineering application value.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"30 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76664025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on depth control of machining trace in electrochemical trepanning 电化学钻削加工轨迹深度控制研究
IF 2.6 3区 工程技术
Zhengyin Li, D. Zhu, Xiaobo Zhang, Jiahao Lin
{"title":"Research on depth control of machining trace in electrochemical trepanning","authors":"Zhengyin Li, D. Zhu, Xiaobo Zhang, Jiahao Lin","doi":"10.1177/09544054231189304","DOIUrl":"https://doi.org/10.1177/09544054231189304","url":null,"abstract":"Electrochemical trepanning (ECTr) is a highly effective and economic manufacturing technology for machining difficult-to-cut metal materials that are often used in aeroengine components. Integral structural components such as blisks, diffusers, etc. are composed of hubs and blades. In continuous ECTr, machining trace stems from on the hub between adjacent blades. The depth of machining trace significantly influences the surface integrity of the integrated components, even causes the scrapping of the workpiece. In order to solve the problem of machining trace in ECTr, a cathode design method based on the relation between cathode profile and electric field distribution is proposed in this study, the edge of the cathode that affects the machining trace is chamfered. A electric field model of ECTr is established and dynamic electric field simulation of ECTr for cathodes with different chamfered edges is performed. The electric field intensity distribution at the cathode edge and the forming profile of the hub are compared. The simulation results show that optimal chamfering parameters can improve the machining trace. Subsequently, a group of cathodes with different chamfered edge is designed, and corresponding ECTr experiments are conducted. The optimal chamfering parameters are determined (α = 5°, b = 2 mm), the depth of the machining trace is reduced from 0.370 mm to 0.122 mm, the surface flatness is significantly improved. Overall, this depth control method of machining trace is verified effectively.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"23 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89639504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信