{"title":"In vivo short-term expression of a hypertrophic cardiomyopathy mutation in adult rabbit myocardium: myofibrillar incorporation without early disarray.","authors":"Q Yu, G Zhao, A J Marian","doi":"10.1046/j.1525-1381.1999.09416.x","DOIUrl":"https://doi.org/10.1046/j.1525-1381.1999.09416.x","url":null,"abstract":"<p><p>Cardiac myocyte disarray is the pathological hallmark of hypertrophic cardiomyopathy (HCM), a disease of sarcomeric proteins. Mutations in the cardiac troponin T (cTnT), a major gene responsible for HCM, are associated with severe myocyte disarray. To study the pathogenesis of cardiac myocyte disarray, we expressed normal and mutant cTnT proteins in the myocardium of adult rabbits via direct intramyocardial injection of recombinant adenoviruses. Aliquots of 1010 plaque-forming units of normal (Ad/CMV/cTnT-Arg92) and mutant (Ad/CMV/cTnT-Gln92) recombinant viruses or a control vector (Ad/DeltaE) virus were mixed with equal aliquots of a reporter virus (Ad/CMV/Lac-Z) and co-injected into the myocardium of adult rabbits (n = 12). One week following gene transfer, thin myocardial sections were obtained and analyzed for beta-galactosidase, messenger RNA (mRNA) and protein expression, hematoxylin and eosin, Masson's trichrome, immunofluorescence staining, and electron microscopy. The efficiency of gene transfer varied from 2% to 60% of the cells in an area approximately 2.5 mm in length. Northern blotting confirmed expression of the transgenes into mRNA. Immunoblotting of the myofibrillar protein extracts and indirect immunofluorescence staining confirmed expression and incorporation of the transgene proteins into myofibrils. Expression of the mutant cTnT was up to 18% of the endogenous. Light and electron microscopic studies showed normal cardiac myocyte and sarcomere structures. Thus, despite incorporation of the mutant cTnT-Gln92, stable myofibrillar formation and sarcomere assembly proceeded in vivo. The absence of myocyte and sarcomere disarray may reflect the duration, or the level of expression, or the extent of myofibrillar incorporation of the mutant cTnT-Gln92, as well as the site and timing of expression of the transgenes, and interspecies variation in the pathogenesis of HCM.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"111 1","pages":"45-56"},"PeriodicalIF":0.0,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20799679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using genetically engineered mice to understand apolipoprotein-B deficiency syndromes in humans.","authors":"M Raabe, E Kim, M Véniant, L B Nielsen, S G Young","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Several human diseases are characterized by defects in the synthesis and secretion of the apolipoprotein (apo) B-containing lipoproteins. Familial hypobetalipoproteinemia is caused by mutations in the apo-B gene and is characterized by abnormally low plasma concentrations of apo-B and low-density lipoprotein (LDL) cholesterol. Another apo-B deficiency syndrome, abetalipoproteinemia, is caused by mutations in the gene for microsomal triglyceride transfer protein (MTP). MTP is a microsomal protein that is thought to transfer lipids to the apo-B protein as it is translated, allowing it to attain the proper conformation for lipoprotein assembly. A third apo-B deficiency syndrome, Anderson's disease (or chylomicron retention disease), is characterized by the inability to secrete apo-B-containing chylomicrons from the intestine but an apparently normal capacity to secrete lipoproteins from the liver. To more fully understand these human apo-B deficiency syndromes, our laboratory has generated and characterized gene-targeted mouse models. This review summarizes what has been learned from these animal models.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"521-30"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20734786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y Taguchi, M Yamamoto, T Yamate, S C Lin, H Mocharla, P DeTogni, N Nakayama, B F Boyce, E Abe, S C Manolagas
{"title":"Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage.","authors":"Y Taguchi, M Yamamoto, T Yamate, S C Lin, H Mocharla, P DeTogni, N Nakayama, B F Boyce, E Abe, S C Manolagas","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cytokines that transduce their signals either through glycoprotein 130 (gp130) homodimers or gp 130/leukemia inhibitory factor (LIF) receptor beta heterodimers are potent inducers of osteoclast development in vitro as well as in vivo; and interleukin (IL)-6 has been recognized as an important pathogenic factor in diseases characterized by increased bone remodeling, such as the osteoporosis of sex steroid deficiency. Based on evidence that the same cytokines can also promote committed osteoblast differentiation and stimulate bone formation in vitro and in vivo and that mesenchymal cell differentiation toward the osteoblast lineage may be a prerequisite for osteoclastogenesis, we have investigated whether gp130 activation can affect the differentiation of uncommitted mesenchymal progenitors. Using as our model murine embryonic fibroblasts (EF), we found that IL-6 or IL-11 in combination with their soluble receptors (sIL-6R or sIL-11R) increased dose-dependently the number of alkaline phosphatase (AP)-positive cells in 3-6-day-long cultures. Moreover, EF cells maintained with IL-6/sIL-6R in the presence of ascorbic acid and beta-glycerophosphate expressed osteocalcin messenger RNA (mRNA) by 2 weeks and formed a matrix containing mineralized collagen fibers by 3 weeks. This prodifferentiation effect was specific for the osteoblastic lineage, as we found no evidence for increased differentiation of chondrocytes, adipocytes, or muscle cells. Unlike IL-6/sIL-6R, LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF) did not promote osteoblastic differentiation of EF cells. This pattern of specificity was accounted for by the finding that EF cells express gp130, but not the ligand-binding subunit of the IL-6 receptor (gp80) nor the LIF receptor beta. These observations add credence to the contention that increased production of gp130-utilizing cytokines and their receptors in pathological conditions like sex steroid deficiency is indeed responsible for not only the increased osteoclastogenesis, but also the increased osteoblastogenesis, and thereby for the increased rate of bone remodeling.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"559-74"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20735267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction.","authors":"J B West","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"481"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20736201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stress-induced injury of pulmonary capillaries.","authors":"J B West, O Mathieu-Costello","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The lung is particularly vulnerable to injury because the blood-gas barrier is so extremely thin. Furthermore, the mechanical stresses in the barrier become very high when capillary pressure is raised, or when the lung is inflated to a high volume. The strength of the blood-gas barrier on the thin side can be attributed to the type IV collagen in the basement membranes. Abnormally high stresses in the walls of the pulmonary capillaries result in ultrastructural changes including disruptions of both the alveolar epithelial and capillary endothelial layers. All Thoroughbred racehorses break their pulmonary capillaries when they gallop. Also, elite human athletes develop changes in the permeability of the blood-gas barrier at high levels of exercise. Pathological conditions resulting in stress failure include: 1) high-altitude pulmonary edema; 2) neurogenic pulmonary edema; 3) severe left ventricular failure; 4) mitral stenosis; and 5) overinflation of the lung. There is a spectrum of low permeability to high permeability edema as the capillary pressure is raised. Remodeling of pulmonary capillaries apparently occurs at high capillary pressures. It is likely that the extracellular matrix of the capillaries is continuously regulated in response to capillary wall stress.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"506-12"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20736205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clinical research in medical schools: seizing the opportunity.","authors":"R E Meyer, P F Griner, J Weissman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Academic medical centers (AMCs) face challenges to the achievement of their potential in clinical research. These challenges include reduced support of research from clinical revenue, cultural impediments to clinical research within the traditional value system of research-intensive AMCs, and potential problems of patient access to clinical research in intensive managed care environments. This article considers options to strengthen clinical research that have been developed at some medical centers. While much attention is being directed to the expansion of clinical trials in many AMCs, this effort needs to be linked to a cohesive strategy for clinical research being conducted in an academic environment. The article also addresses the subject of training and career development. It concludes with the opinion that the \"crisis\" in clinical research in academic medical centers provides the opportunity to define, more explicitly, the nature and scope of the investment in clinical research, and to define strategies that will bring added value to knowledge generated from basic research and to the teaching and patient care missions of these centers.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"513-20"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20736207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ventilator-induced injury: from barotrauma to biotrauma.","authors":"L N Tremblay, A S Slutsky","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Mechanical ventilation is an indispensable tool in the management of respiratory and ventilatory failure. However, ventilation per se may also initiate or exacerbate lung injury, contributing to patient morbidity and mortality. In this review, we examine the current mechanisms of ventilator-induced injury including those that primarily involve physical disruption of the lung, as well as those more recently described that involve cell- and inflammatory-mediator-induced injury. The latter have received attention of late because of the possible systemic sequelae such as multiple system organ failure, the primary cause of death of patients with acute respiratory distress syndrome. Although much remains to be elucidated about the mechanisms of ventilator-induced injury, it is hoped that novel approaches addressing both the physiologic as well as molecular effects of ventilation will lead to innovative therapeutic approaches that improve patient outcome.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"482-8"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20736203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D H Moralejo, S Wei, K Wei, S Weksler-Zangen, G Koike, H J Jacob, T Hirashima, K Kawano, K Sugiura, Y Sasaki, T Ogino, T Yamada, K Matsumoto
{"title":"Identification of quantitative trait loci for non-insulin-dependent diabetes mellitus that interact with body weight in the Otsuka Long-Evans Tokushima Fatty rat.","authors":"D H Moralejo, S Wei, K Wei, S Weksler-Zangen, G Koike, H J Jacob, T Hirashima, K Kawano, K Sugiura, Y Sasaki, T Ogino, T Yamada, K Matsumoto","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Non-insulin-dependent diabetes mellitus (NIDDM) is a prototypical multifactorial disease. Genetic predisposition and obesity are major risk factors for NIDDM development and the interactions between these factors are likely to be important in the etiology of this disease. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is one of the best animal models of NIDDM, since the OLETF rat develops NIDDM with mild obesity that is very similar to human NIDDM. Therefore, the OLETF rat is a powerful model for investigating the interaction between genetic susceptibility to NIDDM and obesity. In this study, our goal was to clarify the relationship between an individual NIDDM susceptibility locus and obesity in the OLETF using a molecular genetics approach. We identified four novel quantitative trait loci (QTLs) that contribute to the susceptibility to NIDDM, none of which shows significant linkage with body weight. However, Nidd1/of on chromosome 7 and Nidd2/of on chromosome 14 have an interaction with body weight. In contrast, one locus was mapped to chromosome 10 for body weight, but not to fasting or postprandial glucose levels. These data illustrate that NIDDM and body weight are under separate genetic control in the OLETF yet interact to yield the final disease phenotype in the two Nidd/of loci. In addition, body weight could be used in place of body mass index as an indicator of obesity in our experimental system of genetic study. This study will facilitate the understanding of the complex interaction between genetic susceptibility to NIDDM and obesity.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"545-58"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20734790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alveolar epithelial fluid transport: basic mechanisms and clinical relevance.","authors":"M A Matthay, H R Flori, E R Conner, L B Ware","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>New evidence indicates that alveolar fluid clearance is driven by active sodium transport across the alveolar epithelium. Several in vivo as well as some in vitro studies indicate that vectorial sodium transport drives fluid clearance across the alveolar epithelium. This transport process can be upregulated by both catecholamine-dependent and catecholamine-independent mechanisms. Water transport appears to move across the alveolar epithelium primarily via transcellular water channels, recently termed aquaporins. Under some conditions, net alveolar fluid clearance continues even in the presence of acute lung injury. It is now possible to study the rate and mechanisms of alveolar fluid clearance in patients with either hydrostatic or increased permeability pulmonary edema. In addition, it may be possible to increase the rate of alveolar fluid clearance and hence the resolution of pulmonary edema in some patients, using aerosolized beta-adrenergic agonist therapy.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"496-505"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20736206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surfactant and acute lung injury.","authors":"A H Jobe, M Ikegami","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This brief review will emphasize four interconnected pathways that can lead to functional abnormalities of surfactant that contribute to lung mechanics and gas exchange abnormalities in acute lung injury. Type II cells, the cells that make and secrete all of the lipids and proteins in surfactant, can be injured, resulting in disruption of metabolic pathways. The normal alveolar conversion of surfactant from active to inactive forms can accelerate with lung injury to deplete the active alveolar pool of surfactant. Alveolar-capillary damage from mechanical ventilation or cytokines will result in interstitial and alveolar edema, and alveolar edema can inhibit surfactant function by a variety of mechanisms. The host defense systems in the lung include macrophages and surfactant protein-A (SP-A). Injury can result in SP-A depletion, macrophage activation, and migration of activated granulocytes into the lungs with release of inflammatory cytokines, oxidants, and proteases that can interfere with surfactant function.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":"110 6","pages":"489-95"},"PeriodicalIF":0.0,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"20736204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}