Elements of ∞-Category Theory最新文献

筛选
英文 中文
The Calculus Of Modules 模块微积分
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.010
{"title":"The Calculus Of Modules","authors":"","doi":"10.1017/9781108936880.010","DOIUrl":"https://doi.org/10.1017/9781108936880.010","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130451312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract Homotopy Theory 摘要同伦理论
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.021
M. Shulman
{"title":"Abstract Homotopy Theory","authors":"M. Shulman","doi":"10.1017/9781108936880.021","DOIUrl":"https://doi.org/10.1017/9781108936880.021","url":null,"abstract":"homotopy theory","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127368032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Model Independence 模型独立性的应用
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.017
{"title":"Applications of Model Independence","authors":"","doi":"10.1017/9781108936880.017","DOIUrl":"https://doi.org/10.1017/9781108936880.017","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127050905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comma ∞-Categories 逗号∞类别
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.005
R. Tate
{"title":"Comma ∞-Categories","authors":"R. Tate","doi":"10.1017/9781108936880.005","DOIUrl":"https://doi.org/10.1017/9781108936880.005","url":null,"abstract":"Definition. In the case where either F1 or F2 is actually the identity functor on B, then one typically uses the notations B ↓F2 or F1 ↓B rather than IdB ↓F2 or F1 ↓ IdB. In general, as an abuse of notation, one often denotes the identity functor on a category with the category itself. Similarly, one often denotes the identity morphism on an object with the object itself. Definition. 1 is the category with a single object (?) and a single morphism (?) on that object. Example. Given functors 1 1 −→ Set IdSet ←−−− Set (where the former is the constant functor picking out the singleton set 1), the comma category 1 ↓Set is also known as pSet, the category of pointed sets. Unfolding definitions, an object in pSet is a set A and an element a of A. A morphism in pSet from 〈A, a〉 to 〈B, b〉 is a function f : A→ B such that f(a) = b. In other words, the following diagrams commute: 1(?) IdSet(A) a","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125595419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
∞-Cosmoi and Their Homotopy 2-Categories ∞-宇宙及其同伦2范畴
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.003
Maru Sarazola, Cat sSet
{"title":"∞-Cosmoi and Their Homotopy\u0000 2-Categories","authors":"Maru Sarazola, Cat sSet","doi":"10.1017/9781108936880.003","DOIUrl":"https://doi.org/10.1017/9781108936880.003","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121285062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Introduction to 2-Category Theory 二范畴论导论
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.020
{"title":"An Introduction to 2-Category\u0000 Theory","authors":"","doi":"10.1017/9781108936880.020","DOIUrl":"https://doi.org/10.1017/9781108936880.020","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126952720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
∞-Cosmoi Found in Nature 在自然界中发现的宇宙
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.024
{"title":"∞-Cosmoi Found in Nature","authors":"","doi":"10.1017/9781108936880.024","DOIUrl":"https://doi.org/10.1017/9781108936880.024","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129269700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjunctions, Limits, and Colimits I 附加、极限和极限1
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.004
{"title":"Adjunctions, Limits, and Colimits I","authors":"","doi":"10.1017/9781108936880.004","DOIUrl":"https://doi.org/10.1017/9781108936880.004","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124883580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exotic ∞-Cosmoi 奇特∞-Cosmoi
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.009
{"title":"Exotic ∞-Cosmoi","authors":"","doi":"10.1017/9781108936880.009","DOIUrl":"https://doi.org/10.1017/9781108936880.009","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115094465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic ∞-Category Theory 基本∞-范畴理论
Elements of ∞-Category Theory Pub Date : 2022-01-31 DOI: 10.1017/9781108936880.002
David I. Spivak
{"title":"Basic ∞-Category Theory","authors":"David I. Spivak","doi":"10.1017/9781108936880.002","DOIUrl":"https://doi.org/10.1017/9781108936880.002","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129828478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信