{"title":"The Calculus Of Modules","authors":"","doi":"10.1017/9781108936880.010","DOIUrl":"https://doi.org/10.1017/9781108936880.010","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130451312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Model Independence","authors":"","doi":"10.1017/9781108936880.017","DOIUrl":"https://doi.org/10.1017/9781108936880.017","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127050905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comma ∞-Categories","authors":"R. Tate","doi":"10.1017/9781108936880.005","DOIUrl":"https://doi.org/10.1017/9781108936880.005","url":null,"abstract":"Definition. In the case where either F1 or F2 is actually the identity functor on B, then one typically uses the notations B ↓F2 or F1 ↓B rather than IdB ↓F2 or F1 ↓ IdB. In general, as an abuse of notation, one often denotes the identity functor on a category with the category itself. Similarly, one often denotes the identity morphism on an object with the object itself. Definition. 1 is the category with a single object (?) and a single morphism (?) on that object. Example. Given functors 1 1 −→ Set IdSet ←−−− Set (where the former is the constant functor picking out the singleton set 1), the comma category 1 ↓Set is also known as pSet, the category of pointed sets. Unfolding definitions, an object in pSet is a set A and an element a of A. A morphism in pSet from 〈A, a〉 to 〈B, b〉 is a function f : A→ B such that f(a) = b. In other words, the following diagrams commute: 1(?) IdSet(A) a","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125595419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"∞-Cosmoi and Their Homotopy\u0000 2-Categories","authors":"Maru Sarazola, Cat sSet","doi":"10.1017/9781108936880.003","DOIUrl":"https://doi.org/10.1017/9781108936880.003","url":null,"abstract":"","PeriodicalId":205894,"journal":{"name":"Elements of ∞-Category Theory","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121285062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}