Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining最新文献

筛选
英文 中文
Learning incoherent sparse and low-rank patterns from multiple tasks 从多个任务中学习不连贯的稀疏和低秩模式
Jianhui Chen, Ji Liu, Jieping Ye
{"title":"Learning incoherent sparse and low-rank patterns from multiple tasks","authors":"Jianhui Chen, Ji Liu, Jieping Ye","doi":"10.1145/1835804.1835952","DOIUrl":"https://doi.org/10.1145/1835804.1835952","url":null,"abstract":"We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. In addition, we present two projected gradient algorithms and discuss their rates of convergence. Experimental results on benchmark data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81762746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 71
Probably the best itemsets 可能是最好的道具集
Nikolaj Tatti
{"title":"Probably the best itemsets","authors":"Nikolaj Tatti","doi":"10.1145/1835804.1835843","DOIUrl":"https://doi.org/10.1145/1835804.1835843","url":null,"abstract":"One of the main current challenges in itemset mining is to discover a small set of high-quality itemsets. In this paper we propose a new and general approach for measuring the quality of itemsets. The method is solidly founded in Bayesian statistics and decreases monotonically, allowing for efficient discovery of all interesting itemsets. The measure is defined by connecting statistical models and collections of itemsets. This allows us to score individual itemsets with the probability of them occuring in random models built on the data. As a concrete example of this framework we use exponential models. This class of models possesses many desirable properties. Most importantly, Occam's razor in Bayesian model selection provides a defence for the pattern explosion. As general exponential models are infeasible in practice, we use decomposable models; a large sub-class for which the measure is solvable. For the actual computation of the score we sample models from the posterior distribution using an MCMC approach. Experimentation on our method demonstrates the measure works in practice and results in interpretable and insightful itemsets for both synthetic and real-world data.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82647434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Scalable similarity search with optimized kernel hashing 可扩展的相似性搜索与优化的内核哈希
Junfeng He, W. Liu, Shih-Fu Chang
{"title":"Scalable similarity search with optimized kernel hashing","authors":"Junfeng He, W. Liu, Shih-Fu Chang","doi":"10.1145/1835804.1835946","DOIUrl":"https://doi.org/10.1145/1835804.1835946","url":null,"abstract":"Scalable similarity search is the core of many large scale learning or data mining applications. Recently, many research results demonstrate that one promising approach is creating compact and efficient hash codes that preserve data similarity. By efficient, we refer to the low correlation (and thus low redundancy) among generated codes. However, most existing hash methods are designed only for vector data. In this paper, we develop a new hashing algorithm to create efficient codes for large scale data of general formats with any kernel function, including kernels on vectors, graphs, sequences, sets and so on. Starting with the idea analogous to spectral hashing, novel formulations and solutions are proposed such that a kernel based hash function can be explicitly represented and optimized, and directly applied to compute compact hash codes for new samples of general formats. Moreover, we incorporate efficient techniques, such as Nystrom approximation, to further reduce time and space complexity for indexing and search, making our algorithm scalable to huge data sets. Another important advantage of our method is the ability to handle diverse types of similarities according to actual task requirements, including both feature similarities and semantic similarities like label consistency. We evaluate our method using both vector and non-vector data sets at a large scale up to 1 million samples. Our comprehensive results show the proposed method outperforms several state-of-the-art approaches for all the tasks, with a significant gain for most tasks.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80307372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 147
Universal multi-dimensional scaling 通用多维标度
Arvind Agarwal, J. M. Phillips, Suresh Venkatasubramanian
{"title":"Universal multi-dimensional scaling","authors":"Arvind Agarwal, J. M. Phillips, Suresh Venkatasubramanian","doi":"10.1145/1835804.1835948","DOIUrl":"https://doi.org/10.1145/1835804.1835948","url":null,"abstract":"In this paper, we propose a unified algorithmic framework for solving many known variants of MDS. Our algorithm is a simple iterative scheme with guaranteed convergence, and is modular; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods in comparable time. Moreover, they have a small memory footprint and scale effectively for large data sets. We expect that this framework will be useful for a number of MDS variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a complement to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, by showing that projecting to a random O((1/µ2) log n)-dimensional sphere causes only an eps-distortion in the geodesic distances.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"205 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80347057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Data mining to predict and prevent errors in health insurance claims processing 用于预测和防止健康保险索赔处理中的错误的数据挖掘
Mohit Kumar, R. Ghani, Z. Mei
{"title":"Data mining to predict and prevent errors in health insurance claims processing","authors":"Mohit Kumar, R. Ghani, Z. Mei","doi":"10.1145/1835804.1835816","DOIUrl":"https://doi.org/10.1145/1835804.1835816","url":null,"abstract":"Health insurance costs across the world have increased alarmingly in recent years. A major cause of this increase are payment errors made by the insurance companies while processing claims. These errors often result in extra administrative effort to re-process (or rework) the claim which accounts for up to 30% of the administrative staff in a typical health insurer. We describe a system that helps reduce these errors using machine learning techniques by predicting claims that will need to be reworked, generating explanations to help the auditors correct these claims, and experiment with feature selection, concept drift, and active learning to collect feedback from the auditors to improve over time. We describe our framework, problem formulation, evaluation metrics, and experimental results on claims data from a large US health insurer. We show that our system results in an order of magnitude better precision (hit rate) over existing approaches which is accurate enough to potentially result in over $15-25 million in savings for a typical insurer. We also describe interesting research problems in this domain as well as design choices made to make the system easily deployable across health insurance companies.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78634899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 69
Fast nearest-neighbor search in disk-resident graphs 磁盘驻留图中的快速最近邻搜索
Purnamrita Sarkar, A. Moore
{"title":"Fast nearest-neighbor search in disk-resident graphs","authors":"Purnamrita Sarkar, A. Moore","doi":"10.1145/1835804.1835871","DOIUrl":"https://doi.org/10.1145/1835804.1835871","url":null,"abstract":"Link prediction, personalized graph search, fraud detection, and many such graph mining problems revolve around the computation of the most \"similar\" k nodes to a given query node. One widely used class of similarity measures is based on random walks on graphs, e.g., personalized pagerank, hitting and commute times, and simrank. There are two fundamental problems associated with these measures. First, existing online algorithms typically examine the local neighborhood of the query node which can become significantly slower whenever high-degree nodes are encountered (a common phenomenon in real-world graphs). We prove that turning high degree nodes into sinks results in only a small approximation error, while greatly improving running times. The second problem is that of computing similarities at query time when the graph is too large to be memory-resident. The obvious solution is to split the graph into clusters of nodes and store each cluster on a disk page; ideally random walks will rarely cross cluster boundaries and cause page-faults. Our contributions here are twofold: (a) we present an efficient deterministic algorithm to find the k closest neighbors (in terms of personalized pagerank) of any query node in such a clustered graph, and (b) we develop a clustering algorithm (RWDISK) that uses only sequential sweeps over data files. Empirical results on several large publicly available graphs like DBLP, Citeseer and Live-Journal (~ 90 M edges) demonstrate that turning high degree nodes into sinks not only improves running time of RWDISK by a factor of 3 but also boosts link prediction accuracy by a factor of 4 on average. We also show that RWDISK returns more desirable (high conductance and small size) clusters than the popular clustering algorithm METIS, while requiring much less memory. Finally our deterministic algorithm for computing nearest neighbors incurs far fewer page-faults (factor of 5) than actually simulating random walks.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82844346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 58
Generative models for ticket resolution in expert networks 专家网络中票据解析的生成模型
Gengxin Miao, L. Moser, Xifeng Yan, S. Tao, Yi Chen, Nikos Anerousis
{"title":"Generative models for ticket resolution in expert networks","authors":"Gengxin Miao, L. Moser, Xifeng Yan, S. Tao, Yi Chen, Nikos Anerousis","doi":"10.1145/1835804.1835897","DOIUrl":"https://doi.org/10.1145/1835804.1835897","url":null,"abstract":"Ticket resolution is a critical, yet challenging, aspect of the delivery of IT services. A large service provider needs to handle, on a daily basis, thousands of tickets that report various types of problems. Many of those tickets bounce among multiple expert groups before being transferred to the group with the right expertise to solve the problem. Finding a methodology that reduces such bouncing and hence shortens ticket resolution time is a long-standing challenge. In this paper, we present a unified generative model, the Optimized Network Model (ONM), that characterizes the lifecycle of a ticket, using both the content and the routing sequence of the ticket. ONM uses maximum likelihood estimation, to represent how the information contained in a ticket is used by human experts to make ticket routing decisions. Based on ONM, we develop a probabilistic algorithm to generate ticket routing recommendations for new tickets in a network of expert groups. Our algorithm calculates all possible routes to potential resolvers and makes globally optimal recommendations, in contrast to existing classification methods that make static and locally optimal recommendations. Experiments show that our method significantly outperforms existing solutions.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85944810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 48
Online discovery and maintenance of time series motifs 在线发现和维护时间序列图案
A. Mueen, Eamonn J. Keogh
{"title":"Online discovery and maintenance of time series motifs","authors":"A. Mueen, Eamonn J. Keogh","doi":"10.1145/1835804.1835941","DOIUrl":"https://doi.org/10.1145/1835804.1835941","url":null,"abstract":"The detection of repeated subsequences, time series motifs, is a problem which has been shown to have great utility for several higher-level data mining algorithms, including classification, clustering, segmentation, forecasting, and rule discovery. In recent years there has been significant research effort spent on efficiently discovering these motifs in static offline databases. However, for many domains, the inherent streaming nature of time series demands online discovery and maintenance of time series motifs. In this paper, we develop the first online motif discovery algorithm which monitors and maintains motifs exactly in real time over the most recent history of a stream. Our algorithm has a worst-case update time which is linear to the window size and is extendible to maintain more complex pattern structures. In contrast, the current offline algorithms either need significant update time or require very costly pre-processing steps which online algorithms simply cannot afford. Our core ideas allow useful extensions of our algorithm to deal with arbitrary data rates and discovering multidimensional motifs. We demonstrate the utility of our algorithms with a variety of case studies in the domains of robotics, acoustic monitoring and online compression.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73669293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 135
Data mining with differential privacy 差分隐私的数据挖掘
Arik Friedman, A. Schuster
{"title":"Data mining with differential privacy","authors":"Arik Friedman, A. Schuster","doi":"10.1145/1835804.1835868","DOIUrl":"https://doi.org/10.1145/1835804.1835868","url":null,"abstract":"We consider the problem of data mining with formal privacy guarantees, given a data access interface based on the differential privacy framework. Differential privacy requires that computations be insensitive to changes in any particular individual's record, thereby restricting data leaks through the results. The privacy preserving interface ensures unconditionally safe access to the data and does not require from the data miner any expertise in privacy. However, as we show in the paper, a naive utilization of the interface to construct privacy preserving data mining algorithms could lead to inferior data mining results. We address this problem by considering the privacy and the algorithmic requirements simultaneously, focusing on decision tree induction as a sample application. The privacy mechanism has a profound effect on the performance of the methods chosen by the data miner. We demonstrate that this choice could make the difference between an accurate classifier and a completely useless one. Moreover, an improved algorithm can achieve the same level of accuracy and privacy as the naive implementation but with an order of magnitude fewer learning samples.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74292963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 473
Medical coding classification by leveraging inter-code relationships 利用代码间关系进行医学编码分类
Yan Yan, Glenn Fung, Jennifer G. Dy, Rómer Rosales
{"title":"Medical coding classification by leveraging inter-code relationships","authors":"Yan Yan, Glenn Fung, Jennifer G. Dy, Rómer Rosales","doi":"10.1145/1835804.1835831","DOIUrl":"https://doi.org/10.1145/1835804.1835831","url":null,"abstract":"Medical coding or classification is the process of transforming information contained in patient medical records into standard predefined medical codes. There are several worldwide accepted medical coding conventions associated with diagnoses and medical procedures; however, in the United States the Ninth Revision of ICD(ICD-9) provides the standard for coding clinical records. Accurate medical coding is important since it is used by hospitals for insurance billing purposes. Since after discharge a patient can be assigned or classified to several ICD-9 codes, the coding problem can be seen as a multi-label classification problem. In this paper, we introduce a multi-label large-margin classifier that automatically learns the underlying inter-code structure and allows the controlled incorporation of prior knowledge about medical code relationships. In addition to refining and learning the code relationships, our classifier can also utilize this shared information to improve its performance. Experiments on a publicly available dataset containing clinical free text and their associated medical codes showed that our proposed multi-label classifier outperforms related multi-label models in this problem.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"331 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77141746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信