通用多维标度

Arvind Agarwal, J. M. Phillips, Suresh Venkatasubramanian
{"title":"通用多维标度","authors":"Arvind Agarwal, J. M. Phillips, Suresh Venkatasubramanian","doi":"10.1145/1835804.1835948","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a unified algorithmic framework for solving many known variants of MDS. Our algorithm is a simple iterative scheme with guaranteed convergence, and is modular; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods in comparable time. Moreover, they have a small memory footprint and scale effectively for large data sets. We expect that this framework will be useful for a number of MDS variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a complement to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, by showing that projecting to a random O((1/µ2) log n)-dimensional sphere causes only an eps-distortion in the geodesic distances.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Universal multi-dimensional scaling\",\"authors\":\"Arvind Agarwal, J. M. Phillips, Suresh Venkatasubramanian\",\"doi\":\"10.1145/1835804.1835948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a unified algorithmic framework for solving many known variants of MDS. Our algorithm is a simple iterative scheme with guaranteed convergence, and is modular; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods in comparable time. Moreover, they have a small memory footprint and scale effectively for large data sets. We expect that this framework will be useful for a number of MDS variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a complement to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, by showing that projecting to a random O((1/µ2) log n)-dimensional sphere causes only an eps-distortion in the geodesic distances.\",\"PeriodicalId\":20529,\"journal\":{\"name\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835804.1835948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

在本文中,我们提出了一个统一的算法框架来解决许多已知的MDS变体。我们的算法是一个保证收敛的简单迭代方案,并且是模块化的;通过改变算法中单个子程序的内部结构,我们可以很容易地切换代价函数和目标空间。除了收敛的形式保证,我们的算法是准确的;在大多数情况下,它们在相当的时间内收敛到比现有方法质量更好的解决方案。此外,它们的内存占用很小,并且可以有效地扩展到大型数据集。我们期望这个框架将对一些尚未被研究的MDS变体有用。我们的框架扩展到将位于球面上的高维点嵌入到低维球面上的点,并保持测地线距离。作为对这一结果的补充,我们还将Johnson-Lindenstrauss引理扩展到这个球面设置,通过表明投射到一个随机的O((1/µ2)log n)维球体上只会在测地线距离上引起eps畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal multi-dimensional scaling
In this paper, we propose a unified algorithmic framework for solving many known variants of MDS. Our algorithm is a simple iterative scheme with guaranteed convergence, and is modular; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods in comparable time. Moreover, they have a small memory footprint and scale effectively for large data sets. We expect that this framework will be useful for a number of MDS variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a complement to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, by showing that projecting to a random O((1/µ2) log n)-dimensional sphere causes only an eps-distortion in the geodesic distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信