Proceedings of 4th International Electronic Conference on Medicinal Chemistry最新文献

筛选
英文 中文
Synthesis and biological screening of analogues of bioactive acid constituents from the traditional Chinese medicinal plant Liquidambar Formosana 中药植物枫香生物活性酸成分类似物的合成及生物筛选
Damir Hamulić, M. Stadler, S. Hering, J. Padrón, Rachel D. Bassett, Fatima Rivas, M. Dea-Ayuela, Miguel A. González-Cardenete
{"title":"Synthesis and biological screening of analogues of bioactive acid constituents from the traditional Chinese medicinal plant Liquidambar Formosana","authors":"Damir Hamulić, M. Stadler, S. Hering, J. Padrón, Rachel D. Bassett, Fatima Rivas, M. Dea-Ayuela, Miguel A. González-Cardenete","doi":"10.3390/ECMC-4-05601","DOIUrl":"https://doi.org/10.3390/ECMC-4-05601","url":null,"abstract":"Liquidambar formosana (also known as maple) is a tall deciduous tree widely distributed in various regions of the South of the Qinling Mountains and Huaihe River in China, and also found in Northern Vietnam, Laos and South Korea. L. formosana is a famous ornamental plant for leaves are green in spring and summer, and red in autumn. Different plant parts of L. formosana, such as leaf, fruit, bark, and resin, are proved to be treasures as natural medicinal plant resources [1]. Among the bioactive constituents, several diterpenoid acids of the abietane family have been identified. Abietic acid (1) occurs in plants of the genus Abies and is the first member of a class of plant metabolites, the abietane-type diterpenoids. They are characterized by a tricyclic ring system and have shown a wide range of chemical diversity and biological activity.[2,3] Medicinal chemists have studied derivatives of two readily available materials such as dehydroabietic acid (2) and dehydroabietylamine (3, DHAA).[3] To date, there is only one commercial drug, Ecabet® [ecabet sodium (4)], based on abietanes, which is used for the treatment of reflux esophagitis and peptic ulcer disease. Ferruginol (5) exhibits anticancer effects in human ovarian cancer and inhibition of cancer cell migration. Recent studies of sugiol (6) demonstrated in vivo antitumor activity in DU145 prostate xenografts. These biological reports and the simultaneous isolation, (in 2014) by Hua and co-workers, of the new abietane liquiditerpenoic acid A (7), a sugiol analogue, from the resin of Liquidambar formosana [4] and from Pinus massoniana,[5] by Kuo and co-workers named independently as abietopinoic acid, prompted us to synthesize it and study its biological properties along with some analogues.\u0000References \u0000[1] Ouyang, X. L.; Yi, S.; Lu, H. Y.; Wu, S. M.; Zhao, H. Q. Eur. J. Med. Plants 2016, 17, 1-11.\u0000[2] For a review on this topic, see: Gonzalez, M. A. Nat. Prod. Rep. 2015, 32, 684-704.\u0000[3] For a review on this topic, see: Gonzalez, M. A. Eur. J. Med. Chem. 2014, 87, 834-842.\u0000[4] Shang, H.-J.; Li, D.-Y.; Wang, W.-J.; Li, Z.-L.; Hua, H.-M. Nat. Prod. Res. 2014, 28, 1-6.\u0000[5] Mohamed, H. A.; Hsieh, C.-L.; Hsu, C.; Kuo, C.-C.; Kuo, Y.-H. Helv. Chim. Acta 2014, 97, 1146-1151.","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80933394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of novel endocannabinoid level modulators by modification of old analgesic drugs 通过对旧镇痛药物的修饰发现新的内源性大麻素水平调节剂
A. Deplano, Monica Demurtas, V. Onnis
{"title":"Discovery of novel endocannabinoid level modulators by modification of old analgesic drugs","authors":"A. Deplano, Monica Demurtas, V. Onnis","doi":"10.3390/ECMC-4-05590","DOIUrl":"https://doi.org/10.3390/ECMC-4-05590","url":null,"abstract":"Fatty acid amide hydrolase (FAAH) is a serine hydrolase that catalyzes the deactivating hydrolysis of the fatty acid ethanolamide family of signaling lipids, which includes anandamide (AEA), an endogenous ligand for cannabinoid receptors. Endogenous FAAH substrates such as AEA serve key regulatory functions in the body and have been implicated in a variety of pathological conditions including pain, inflammation, sleep disorders, anxiety, depression, and vascular hypertension, and there has been an increasing interest in the development of inhibitors of this enzyme. Different structural classes of FAAH inhibitors have been reported including alpha-ketoheterocycles, (thio)hydantoins, piperidine/piperazine ureas, and carbamate derivatives. When tested, these compounds have been shown to be efficacious in models of inflammatory, visceral, and in some cases neuropathic pain without producing the central effects seen with directly acting cannabinoid receptor agonists. An intriguing aspect of FAAH inhibition is that some currently marketed nonsteroidal anti-inflammatory drugs (NSAIDs) have also been shown to be weak inhibitors of FAAH, but can be used as a template for the design of more potent compounds. However, structure–activity relationships of analogues of clinically used NSAIDs with respect to FAAH inhibition have been examined scarcely in the literature. These findings led us to design and synthesis of new series of FAAH inhibitors derivable from conjugation of heterocyclic structures with NSAIDs as profens, fenamates, and new their correlate molecules. In this keynote we report on the synthetic pathways to transform old analgesic drugs into FAAH inhibitors and SAR studies on the new inhibitor series.","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74813251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Structure modeling & analysis of transmembrane protein EVI2A from Homo sapiens 智人跨膜蛋白EVI2A的三维结构建模与分析
Pramodkumar P. Gupta, V. Kale, V. Bastikar, S. Chhajed, M. Valius, J. Cicenas
{"title":"3D Structure modeling & analysis of transmembrane protein EVI2A from Homo sapiens","authors":"Pramodkumar P. Gupta, V. Kale, V. Bastikar, S. Chhajed, M. Valius, J. Cicenas","doi":"10.3390/ecmc-4-05593","DOIUrl":"https://doi.org/10.3390/ecmc-4-05593","url":null,"abstract":"Protein EVI2A (Ecotropic viral integration site 2A) is a type 1 single pass membrane protein containing 236 amino acid residues. EVI2A is associated with several human diseases such as schizophrenia and numerous malignancies including breast and ovarian cancers.\u0000Protein 3D structure helps in understanding the molecular function of the proteins and their important role in the biological scenario if any. Till date no 3D structure of protein EVI2A has been reported in public or private databases. To fill that gap, we evaluated some computational models including comparative methods, de novo approach, ab initio and threading based methods. The multiple models, including 3D model from I-Tasser, afforded a good agreement of output and structural features. A complete model of protein EVI2A was validated by ProSa and Ramachandran analyses. Molecular dynamics (MD) simulations were performed and analyzed using the GROMACS package and active site prediction was carried out using CASTp. The predicted model could be a starting point for structural biologists, drug discovery groups, and scientific community to further enhance their studies.\u0000.","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86937805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico studies of aminated thioxanthones: bacterial multidrug efflux pumps vs P-glycoprotein 氨基硫代蒽酮的计算机研究:细菌多药外排泵vs p -糖蛋白
E. Sousa, Fernando Durães, A. Palmeira, M. Pinto
{"title":"In silico studies of aminated thioxanthones: bacterial multidrug efflux pumps vs P-glycoprotein","authors":"E. Sousa, Fernando Durães, A. Palmeira, M. Pinto","doi":"10.3390/ECMC-4-05598","DOIUrl":"https://doi.org/10.3390/ECMC-4-05598","url":null,"abstract":"","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90572262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of different geometrical structures of copper(II) complexes on interactions with bio-relevant nucleophiles under physiological conditions 生理条件下铜(II)配合物不同几何结构对生物相关亲核试剂相互作用的影响
Enisa Selimović, A. Komolkin, A. Egorov, T. Soldatović
{"title":"Impact of different geometrical structures of copper(II) complexes on interactions with bio-relevant nucleophiles under physiological conditions","authors":"Enisa Selimović, A. Komolkin, A. Egorov, T. Soldatović","doi":"10.3390/ECMC-4-05479","DOIUrl":"https://doi.org/10.3390/ECMC-4-05479","url":null,"abstract":"Over the past decades, transition metal complexes have attracted considerable attention in medicinal inorganic chemistry, especially as synthetic metallonucleases and metal-based anticancer drugs that are able to bind to DNA under physiological conditions (Pessoa, J.C., et al. J. Inorg. Biochem. 2011, 105, 637-644). Copper(II) complexes offer various potential advantages as antimicrobial, antiviral, anti-inflammatory, antitumor agents, enzyme inhibitors, chemical nucleases, and they are also beneficial against several diseases like copper rheumatoid and gastric ulcers (Fricker, S.P., Dalton Trans. 2007, 43, 4903-4917).\u0000Substitution reactions of square-planar [CuCl2(en)] and square-pyramidal [CuCl2(terpy)] complexes (where en= 1,2-diaminoethane and terpy= 2,2’:6’,2’’- terpyridine) with bio-relevant nucleophiles have been investigated at pH 7.4 in the presence of 0.010 M NaCl. Mechanism of substitution was probed via mole-ratio, kinetic, mass spectroscopy and EPR studies. In the presence of an excess of chloride, the octahedral complex anion [CuCl4(en)]2- forms rapidly while equilibrium reaction was observed for [CuCl2(terpy)]. Different order of reactivity of selected bio-molecules toward Cu(II) complexes was observed. The nature of the buffer just affects the Cu(II) complexes conformational dynamics. According to EPR data L-Methionine forms a most stable complex with [CuCl2(en)] among the bio-ligands considered while [CuCl2(terpy)] complex is very stable and there are no significant changes in its square-pyramidal geometry in the presence of buffers or bio-ligands. The obtained results represent progress in investigation of the mechanism of substitution reactions between Cu(II) complexes and biological relevant nuclepohiles. Also, they provide very useful information for the future design of potential copper-based anticancer drugs (Selimovic, E., et al. J. Coord. Chem. 2018, 71(7), 1003-1019).","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91494273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信