3D Structure modeling & analysis of transmembrane protein EVI2A from Homo sapiens

Pramodkumar P. Gupta, V. Kale, V. Bastikar, S. Chhajed, M. Valius, J. Cicenas
{"title":"3D Structure modeling & analysis of transmembrane protein EVI2A from Homo sapiens","authors":"Pramodkumar P. Gupta, V. Kale, V. Bastikar, S. Chhajed, M. Valius, J. Cicenas","doi":"10.3390/ecmc-4-05593","DOIUrl":null,"url":null,"abstract":"Protein EVI2A (Ecotropic viral integration site 2A) is a type 1 single pass membrane protein containing 236 amino acid residues. EVI2A is associated with several human diseases such as schizophrenia and numerous malignancies including breast and ovarian cancers.\nProtein 3D structure helps in understanding the molecular function of the proteins and their important role in the biological scenario if any. Till date no 3D structure of protein EVI2A has been reported in public or private databases. To fill that gap, we evaluated some computational models including comparative methods, de novo approach, ab initio and threading based methods. The multiple models, including 3D model from I-Tasser, afforded a good agreement of output and structural features. A complete model of protein EVI2A was validated by ProSa and Ramachandran analyses. Molecular dynamics (MD) simulations were performed and analyzed using the GROMACS package and active site prediction was carried out using CASTp. The predicted model could be a starting point for structural biologists, drug discovery groups, and scientific community to further enhance their studies.\n.","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecmc-4-05593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein EVI2A (Ecotropic viral integration site 2A) is a type 1 single pass membrane protein containing 236 amino acid residues. EVI2A is associated with several human diseases such as schizophrenia and numerous malignancies including breast and ovarian cancers. Protein 3D structure helps in understanding the molecular function of the proteins and their important role in the biological scenario if any. Till date no 3D structure of protein EVI2A has been reported in public or private databases. To fill that gap, we evaluated some computational models including comparative methods, de novo approach, ab initio and threading based methods. The multiple models, including 3D model from I-Tasser, afforded a good agreement of output and structural features. A complete model of protein EVI2A was validated by ProSa and Ramachandran analyses. Molecular dynamics (MD) simulations were performed and analyzed using the GROMACS package and active site prediction was carried out using CASTp. The predicted model could be a starting point for structural biologists, drug discovery groups, and scientific community to further enhance their studies. .
智人跨膜蛋白EVI2A的三维结构建模与分析
EVI2A蛋白(Ecotropic viral integration site 2A)是一种含有236个氨基酸残基的1型单通膜蛋白。EVI2A与精神分裂症等几种人类疾病以及包括乳腺癌和卵巢癌在内的许多恶性肿瘤有关。蛋白质三维结构有助于理解蛋白质的分子功能及其在生物场景中的重要作用。迄今为止,在公共或私人数据库中尚未报道蛋白质EVI2A的三维结构。为了填补这一空白,我们评估了一些计算模型,包括比较方法、从头开始方法、从头开始方法和基于线程的方法。多个模型,包括来自I-Tasser的3D模型,提供了很好的输出和结构特征的一致性。通过ProSa和Ramachandran分析验证了完整的EVI2A蛋白模型。使用GROMACS软件包进行分子动力学(MD)模拟和分析,使用CASTp进行活性位点预测。该预测模型可以作为结构生物学家、药物开发小组和科学界进一步加强研究的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信