PPAR Research最新文献

筛选
英文 中文
Vitamin A: A Key Inhibitor of Adipocyte Differentiation. 维生素A:脂肪细胞分化的关键抑制剂。
IF 2.9 3区 医学
PPAR Research Pub Date : 2023-01-01 DOI: 10.1155/2023/7405954
Manal A Malibary
{"title":"Vitamin A: A Key Inhibitor of Adipocyte Differentiation.","authors":"Manal A Malibary","doi":"10.1155/2023/7405954","DOIUrl":"https://doi.org/10.1155/2023/7405954","url":null,"abstract":"<p><p>Inhibiting adipocyte differentiation, the conversion of preadipocytes to mature functional adipocytes, might represent a new approach to treating obesity and related metabolic disorders. Peroxisome proliferator-activated receptor <i>γ</i> and CCAAT-enhancer-binding protein <i>α</i> are two master coregulators controlling adipogenesis both in culture and in vivo. Many recent studies have confirmed the relationship between retinoic acid (RA) and the conversion of embryonic stem cells into adipocytes; however, these studies have shown that RA potently blocks the differentiation of preadipocytes into mature adipocytes. Nevertheless, the functional role of RA in early tissue development and stem cell differentiation, including in adipose tissue, remains unclear. This study highlights transcription factors that block adipocyte differentiation and maintain preadipocyte status, focusing on those controlled by RA. However, some of these novel adipogenesis inhibitors have not been validated in vivo, and their mechanisms of action require further clarification.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2023 ","pages":"7405954"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10707322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Appraisal of the Possible Role of PPARγ Upregulation by CLA of Probiotic Pediococcus pentosaceus GS4 in Colon Cancer Mitigation. 益生菌戊糖Pediococcus GS4 CLA上调PPARγ在结肠癌缓解中的可能作用
IF 2.9 3区 医学
PPAR Research Pub Date : 2023-01-01 DOI: 10.1155/2023/9458308
Vinay Dubey, Alok Kumar Mishra, Asit Ranjan Ghosh
{"title":"Appraisal of the Possible Role of PPAR<i>γ</i> Upregulation by CLA of Probiotic <i>Pediococcus pentosaceus</i> GS4 in Colon Cancer Mitigation.","authors":"Vinay Dubey,&nbsp;Alok Kumar Mishra,&nbsp;Asit Ranjan Ghosh","doi":"10.1155/2023/9458308","DOIUrl":"https://doi.org/10.1155/2023/9458308","url":null,"abstract":"<p><p>The prevalence of colon cancer (CC) is increasing at the endemic scale, which is accompanied by subsequent morbidity and mortality. Although there have been noteworthy achievements in the therapeutic strategies in recent years, the treatment of patients with CC remains a formidable task. The current study focused on to study role of biohydrogenation-derived conjugated linoleic acid (CLA) of probiotic <i>Pediococcus pentosaceus</i> GS4 (CLA<sub>GS4</sub>) against CC, which induced peroxisome proliferator-activated receptor gamma (PPAR<i>γ</i>) expression in human CC HCT-116 cells. Pre-treatment with PPAR<i>γ</i> antagonist bisphenol A diglycidyl ether has significantly reduced the inhibitory efficacy of enhanced cell viability of HCT-116 cells, suggesting the PPAR<i>γ</i>-dependent cell death. The cancer cells treated with CLA/CLA<sub>GS4</sub> demonstrated the reduced level of Prostaglandin E2 PGE<sub>2</sub> in association with reduced COX-2 and 5-LOX expressions. Moreover, these consequences were found to be associated with PPAR<i>γ</i>-dependent. Furthermore, delineation of mitochondrial dependent apoptosis with the help of molecular docking LigPlot analysis showed that CLA can bind with hexokinase-II (hHK-II) (highly expressed in cancer cells) and that this association underlies voltage dependent anionic channel to open, thereby causing mitochondrial membrane depolarization, a condition that initiates intrinsic apoptotic events. Apoptosis was further confirmed by annexin V staining and elevation of caspase 1p10 expression. Taken all together, it is deduced that, mechanistically, the upregulation of PPAR<i>γ</i> by CLA<sub>GS4</sub> of <i>P</i>. <i>pentosaceus</i> GS4 can alter cancer cell metabolism in association with triggering apoptosis in CC.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2023 ","pages":"9458308"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10854739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of PPARγ Protects Obese Mice from Acute Lung Injury by Inhibiting Endoplasmic Reticulum Stress and Promoting Mitochondrial Biogenesis. 激活PPARγ通过抑制内质网应激和促进线粒体生物发生保护肥胖小鼠急性肺损伤。
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-09-28 eCollection Date: 2022-01-01 DOI: 10.1155/2022/7888937
Yin Tang, Ke Wei, Ling Liu, Jingyue Ma, Siqi Wu, Wenjing Tang
{"title":"Activation of PPAR<i>γ</i> Protects Obese Mice from Acute Lung Injury by Inhibiting Endoplasmic Reticulum Stress and Promoting Mitochondrial Biogenesis.","authors":"Yin Tang,&nbsp;Ke Wei,&nbsp;Ling Liu,&nbsp;Jingyue Ma,&nbsp;Siqi Wu,&nbsp;Wenjing Tang","doi":"10.1155/2022/7888937","DOIUrl":"https://doi.org/10.1155/2022/7888937","url":null,"abstract":"<p><strong>Objective: </strong>Obesity-induced endoplasmic reticulum (ER) stress plays a role in increased susceptibility to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The activation of peroxisome proliferator-activated receptor-<i>γ</i> (PPAR<i>γ</i>) is associated with lung protection and is effective in ameliorating ER stress and mitochondrial dysfunction. The aim of this study was to investigate the expression of PPAR<i>γ</i> in the lung tissues of obese mice and explore whether the PPAR<i>γ</i>-dependent pathway could mediate decreased ALI/ARDS by regulating ER stress and mitochondrial biogenesis.</p><p><strong>Methods: </strong>We determined PPAR<i>γ</i> expression in the lung tissues of normal and obese mice. ALI models of alveolar epithelial cells and of obese mice were used and treated with either PPAR<i>γ</i> activator rosiglitazone (RSG) or PPAR<i>γ</i> inhibitor GW9662. Lung tissue and cell samples were collected to assess lung inflammation and apoptosis, and ER stress and mitochondrial biogenesis were detected.</p><p><strong>Results: </strong>PPAR<i>γ</i> expression was significantly decreased in the lung tissue of obese mice compared with that in normal mice. Both in vivo and in vitro studies have shown that activation of PPAR<i>γ</i> leads to reduced expression of the ER stress marker proteins 78-kDa glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP), and Caspase12. Conversely, expression of the mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor <i>γ</i> coactivator 1 (PGC-1<i>α</i>), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM) increased. Furthermore, activation of PPAR<i>γ</i> is associated with decreased levels of lung inflammation and epithelial apoptosis and increased expression of adiponectin (APN) and mitofusin2 (MFN2). GW9662 bound to PPAR<i>γ</i> and blocked its transcriptional activity and then diminished the protective effect of PPAR<i>γ</i> on lung tissues.</p><p><strong>Conclusions: </strong>PPAR<i>γ</i> activation exerts anti-inflammation effects in alveolar epithelia by alleviating ER stress and promoting mitochondrial biogenesis. Therefore, lower levels of PPAR<i>γ</i> in the lung tissues of obese mice may lead to an increased susceptibility to ALI.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2022 ","pages":"7888937"},"PeriodicalIF":2.9,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33497358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. 植物化学物质对PPAR受体的影响:对疾病治疗的启示。
IF 3.5 3区 医学
PPAR Research Pub Date : 2022-08-31 eCollection Date: 2022-01-01 DOI: 10.1155/2022/4714914
Ayesheh Enayati, Mobina Ghojoghnejad, Basil D Roufogalis, Seyed Adel Maollem, Amirhossein Sahebkar
{"title":"Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments.","authors":"Ayesheh Enayati, Mobina Ghojoghnejad, Basil D Roufogalis, Seyed Adel Maollem, Amirhossein Sahebkar","doi":"10.1155/2022/4714914","DOIUrl":"10.1155/2022/4714914","url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2022 ","pages":"4714914"},"PeriodicalIF":3.5,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33460905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PPAR-γ Agonist Pioglitazone Restored Mouse Liver mRNA Expression of Clock Genes and Inflammation-Related Genes Disrupted by Reversed Feeding PPAR-γ激动剂吡格列酮恢复反向喂养中断的小鼠肝脏时钟基因和炎症相关基因的mRNA表达
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-05-26 DOI: 10.1155/2022/7537210
T. Fedchenko, O. Izmailova, V. Shynkevych, O. Shlykova, I. Kaidashev
{"title":"PPAR-γ Agonist Pioglitazone Restored Mouse Liver mRNA Expression of Clock Genes and Inflammation-Related Genes Disrupted by Reversed Feeding","authors":"T. Fedchenko, O. Izmailova, V. Shynkevych, O. Shlykova, I. Kaidashev","doi":"10.1155/2022/7537210","DOIUrl":"https://doi.org/10.1155/2022/7537210","url":null,"abstract":"Introduction The master clock, which is located in the suprachiasmatic nucleus (SCN), harmonizes clock genes present in the liver to synchronize life rhythms and bioactivity with the surrounding environment. The reversed feeding disrupts the expression of clock genes in the liver. Recently, a novel role of PPAR-γ as a regulator in correlating circadian rhythm and metabolism was demonstrated. This study examined the influence of PPAR-γ agonist pioglitazone (PG) on the mRNA expression profile of principle clock genes and inflammation-related genes in the mouse liver disrupted by reverse feeding. Methods Mice were randomly assigned to daytime-feeding and nighttime-feeding groups. Mice in daytime-feeding groups received food from 7 AM to 7 PM, and mice in nighttime-feeding groups received food from 7 PM to 7 AM. PG was administered in the dose of 20 mg/kg per os as aqueous suspension 40 μl at 7 AM or 7 PM. Each group consisted of 12 animals. On day 8 of the feeding intervention, mice were sacrificed by cervical dislocation at noon (05 hours after light onset (HALO)) and midnight (HALO 17). Liver expressions of Bmal1, Clock, Rev-erb alpha, Cry1, Cry2, Per1, Per2, Cxcl5, Nrf2, and Ppar-γ were determined by quantitative reverse transcription PCR. Liver expression of PPAR-γ, pNF-κB, and IL-6 was determined by Western blotting. Glucose, ceruloplasmin, total cholesterol, triglyceride concentrations, and ALT and AST activities were measured in sera by photometric methods. The null hypothesis tested was that PG and the time of its administration have no influence on the clock gene expression impaired by reverse feeding. Results Administration of PG at 7 AM to nighttime-feeding mice did not reveal any influence on the expression of the clock or inflammation-related genes either at midnight or at noon. In the daytime-feeding group, PG intake at 7 PM led to an increase in Per2 and Rev-erb alpha mRNA at noon, an increase in Ppar-γ mRNA at midnight, and a decrease in Nfκb (p65) mRNA at noon. In general, PG administration at 7 PM slightly normalized the impaired expression of clock genes and increased anti-inflammatory potency impaired by reversed feeding. This pattern was supported by biochemical substrate levels—glucose, total cholesterol, ALT, and AST activities. The decrease in NF-κB led to the inhibition of serum ceruloplasmin levels as well as IL-6 in liver tissue. According to our data, PG intake at 7 PM exerts strong normalization of clock gene expression with a further increase in Nrf2 and, especially, Ppar-γ and PPAR-γ expression with inhibition of Nfκb and pNF-κB expression in daytime-feeding mice. These expression changes resulted in decreased hyperglycemia, hypercholesterolemia, ALT, and AST activities. Thus, PG had a potent chronopharmacological effect when administered at 7 PM to daytime-feeding mice. Conclusions Our study indicates that reversed feeding induced the disruption of mouse liver circadian expression pattern of clock genes accompanied by","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48218991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Molecular Dynamics Simulation and Essential Dynamics of Deleterious Proline 12 Alanine Single-Nucleotide Polymorphism in PPARγ2 Associated with Type 2 Diabetes, Cardiovascular Disease, and Nonalcoholic Fatty Liver Disease PPARγ2缺失脯氨酸12丙氨酸单核苷酸多态性与2型糖尿病、心血管疾病和非酒精性脂肪肝相关的分子动力学模拟和本质动力学
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-05-02 DOI: 10.1155/2022/3833668
Somayye Taghvaei, L. Saremi
{"title":"Molecular Dynamics Simulation and Essential Dynamics of Deleterious Proline 12 Alanine Single-Nucleotide Polymorphism in PPARγ2 Associated with Type 2 Diabetes, Cardiovascular Disease, and Nonalcoholic Fatty Liver Disease","authors":"Somayye Taghvaei, L. Saremi","doi":"10.1155/2022/3833668","DOIUrl":"https://doi.org/10.1155/2022/3833668","url":null,"abstract":"Background. Peroxisome proliferator-activated receptor-γ (PPARγ) gene is located at 3p25 position. PPARγ functions as the master regulator of glucose homeostasis and lipoprotein metabolism, and recent studies have reported that it is involved in various metabolic diseases such as diabetes mellitus, hyperlipidemia, coronary artery disease (CAD), and nonalcoholic fatty liver disease (NAFLD). PPARγ1 and PPARγ2 are necessary for the development of adipose tissue and insulin sensitivity regulation. But PPARγ2 is the isoform that was controlled in response to nutrient intake and obesity. Methodology. In this study, we used computational techniques to show the impact of Pro12Ala polymorphism on PPARγ2. The 3-D structure of PPARγ2 was modeled using I-TASSER server. The modeled structure was validated with the ZLab server, and the mutation was created with SPDB viewer. Stability prediction tools were used. Molecular dynamics simulation (MDS) was used to understand the structural and functional behavior of the wild type and mutant. Essential dynamics was also applied. Results and Conclusions. Stability prediction tools were showed that this mutation has a destabilizing effect on the PPARγ2 structure. The RMSD, RMSF, Rg, SASA, and DSSP were in line with H-bond results that showed less flexibility in the mutant structure. Essential dynamics was used to verify MDS results. Pro12Ala polymorphism leads to rigidity of the PPARγ2 protein and might disturb the conformational changes and interactions of PPARγ2 and results in type 2 diabetes mellitus (T2DM), CAD, and NAFLD. This study can help scientists to develop a drug therapy against these diseases.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49239561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Expression of PPAR Pathway-Related Genes Can Better Predict the Prognosis of Patients with Colon Adenocarcinoma PPAR通路相关基因的表达可以更好地预测结肠癌患者的预后
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-04-18 DOI: 10.1155/2022/1285083
Xiao-Yu Zhou, Jianqiu Wang, Jin-Xu Chen, Jing-Song Chen
{"title":"The Expression of PPAR Pathway-Related Genes Can Better Predict the Prognosis of Patients with Colon Adenocarcinoma","authors":"Xiao-Yu Zhou, Jianqiu Wang, Jin-Xu Chen, Jing-Song Chen","doi":"10.1155/2022/1285083","DOIUrl":"https://doi.org/10.1155/2022/1285083","url":null,"abstract":"The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients' outcomes. PPAR-Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make precise treatment decisions regarding the possible long-term survival of patients after surgery.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45193358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
α-Bisabolol Mitigates Colon Inflammation by Stimulating Colon PPAR-γ Transcription Factor: In Vivo and In Vitro Study α-双abolol通过刺激结肠PPAR-γ转录因子减轻结肠炎症:体内和体外研究
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-04-13 DOI: 10.1155/2022/5498115
Balaji Venkataraman, S. Almarzooqi, V. Raj, P. Dudeja, B. Bhongade, R. Patil, S. Ojha, S. Attoub, T. Adrian, S. Subramanya
{"title":"α-Bisabolol Mitigates Colon Inflammation by Stimulating Colon PPAR-γ Transcription Factor: In Vivo and In Vitro Study","authors":"Balaji Venkataraman, S. Almarzooqi, V. Raj, P. Dudeja, B. Bhongade, R. Patil, S. Ojha, S. Attoub, T. Adrian, S. Subramanya","doi":"10.1155/2022/5498115","DOIUrl":"https://doi.org/10.1155/2022/5498115","url":null,"abstract":"The incidence and prevalence of inflammatory bowel disease (IBD, Crohn's disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects. Therefore, the development of new drugs for IBD treatment is an important area of investigation. Here, we investigated the anti-inflammatory effects of α-bisabolol, a naturally occurring monocyclic sesquiterpene alcohol present in many aromatic plants, in colonic inflammation. To address this, we used molecular docking and dynamic studies to understand how α-bisabolol interacts with PPAR-γ, which is highly expressed in the colonic epithelium: in vivo (mice) and in vitro (RAW264.7 macrophages and HT-29 colonic adenocarcinoma cells) models. The molecular docking and dynamic analysis revealed that α-bisabolol interacts with PPAR-γ, a nuclear receptor protein that is highly expressed in the colon epithelium. Treatment with α-bisabolol in DSS-administered mice significantly reduced Disease Activity Index (DAI), myeloperoxidase (MPO) activity, and colonic length and protected the microarchitecture of the colon. α-Bisabolol treatment also reduced the expression of proinflammatory cytokines (IL-6, IL1β, TNF-α, and IL-17A) at the protein and mRNA levels. The expression of COX-2 and iNOS inflammatory mediators were reduced along with tissue nitrite levels. Furthermore, α-bisabolol decreased the phosphorylation of activated mitogen-activated protein kinase (MAPK) signaling and nuclear factor kappa B (NFκB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. However, the PPAR-α and β/δ expression was not altered, indicating α-bisabolol is a specific stimulator of PPAR-γ. α-Bisabolol also increased the PPAR-γ transcription factor expression but not PPAR-α and β/δ in pretreated in LPS-stimulated RAW264.7 macrophages. α-Bisabolol significantly decreased the expression of proinflammatory chemokines (CXCL-1 and IL-8) mRNA in HT-29 cells treated with TNF-α and HT-29 PPAR-γ promoter activity. These results demonstrate that α-bisabolol mitigates colonic inflammation by inhibiting MAPK signaling and stimulating PPAR-γ expression.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2022 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42053945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Oleoylethanolamide Alleviates Hepatic Ischemia-Reperfusion Injury via Inhibiting Endoplasmic Reticulum Stress-Associated Apoptosis 油基乙醇酰胺通过抑制内质网应激相关细胞凋亡减轻肝缺血再灌注损伤
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-03-21 DOI: 10.1155/2022/2212996
Shunli Qi, Qi Yan, Zhen Wang, Deng Liu, Mengting Zhan, Jian Du, Lijian Chen
{"title":"Oleoylethanolamide Alleviates Hepatic Ischemia-Reperfusion Injury via Inhibiting Endoplasmic Reticulum Stress-Associated Apoptosis","authors":"Shunli Qi, Qi Yan, Zhen Wang, Deng Liu, Mengting Zhan, Jian Du, Lijian Chen","doi":"10.1155/2022/2212996","DOIUrl":"https://doi.org/10.1155/2022/2212996","url":null,"abstract":"Liver ischemia/reperfusion (I/R) injury is a primary complication in major liver surgery. Our previous study about proteome profiling has revealed that the PPAR signaling cascade was significantly upregulated during liver ischemia/reperfusion. To elucidate the potential mechanisms of PPARα involved in I/R injury, we used oleoylethanolamide (OEA), the peroxisome proliferator-activated receptor alpha (PPARα) agonist, in this study. We demonstrated a protective role of OEA on liver I/R injury by using a mouse model of partial warm ischemia-reperfusion and hypoxia-reoxygenation model of hepatocytes. These effects were caused by ameliorating liver damage, decreasing the level of serum ALT and AST, and reducing the apoptosis of hepatocytes. Furthermore, a mechanistic study revealed that OEA regulated endoplasmic reticulum (ER) stress by activating PPARα, thereby reducing ER stress-associated apoptosis to attenuate liver I/R injury. Briefly, these data first proposed that OEA-mediated PPARα activation could be an effective therapy against hepatic ischemia/reperfusion injury.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42809202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Explore the Role of the rs1801133-PPARG Pathway in the H-type Hypertension rs1801133-PPARG通路在H型高血压中的作用探讨
IF 2.9 3区 医学
PPAR Research Pub Date : 2022-03-20 DOI: 10.1155/2022/2054876
Xiuwen Liang, Tingting He, Lihong Gao, Libo Wei, Di Rong, Yu Zhang, Yu Liu
{"title":"Explore the Role of the rs1801133-PPARG Pathway in the H-type Hypertension","authors":"Xiuwen Liang, Tingting He, Lihong Gao, Libo Wei, Di Rong, Yu Zhang, Yu Liu","doi":"10.1155/2022/2054876","DOIUrl":"https://doi.org/10.1155/2022/2054876","url":null,"abstract":"Both rs1801133 mutation on Methylenetetrahydrofolate reductase (MTHFR) gene and transcription factor peroxisome proliferator-activated gamma (PPARG) have been associated with plasma homocysteine (Hcy) levels and hypertension. However, their role in H-type hypertension remains unclear. In this study, we first tested the association between rs1801133 genotypes and Hcy level in H-type hypertension using clinical profiles collected from 203 patients before and after the treatment using enalapril maleate and folic acid tablets (EMFAT). Then, we constructed a literature-based pathway analysis to explore the role of the rs1801133-PPARG signaling pathway in H-type hypertension and its treatment. Although presented similar blood pressure, the patients with TT genotype of rs1801133 were much younger (p value <0.05) and significantly higher in Hcy levels (x2 = 6.11 and p < 0.005) than that in the CC and CT genotype groups. Pathway analysis showed that T-allele of rs1801133 could inhibit the expression of PPARG through the downregulation of folate levels and upregulation of Hcy levels, which increased the risk of hypertension and hyperhomocysteinemia. Treatment using EMFAT led to similarly decreased Hcy levels for all patients with different genotypes (x2 = 86.00; p < 0.36), which may occur partially through the activation of PPARG. Moreover, even after treatment, the patients with TT genotype still presented significantly higher Hcy levels (x2 = 7.87 and p < 0.001). Our results supported that rs1801133 mutation could play a role in H-type hypertension, which might be partially through the downregulation of PPARG. Moreover, PPARG might also be involved in treating H-type hypertension using EMFAT.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47147742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信