PLoS GeneticsPub Date : 2023-09-18eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010938
Hannah J Smith, Anne Lanjuin, Arpit Sharma, Aditi Prabhakar, Ewelina Nowak, Peter G Stine, Rohan Sehgal, Klement Stojanovski, Benjamin D Towbin, William B Mair
{"title":"Neuronal mTORC1 inhibition promotes longevity without suppressing anabolic growth and reproduction in C. elegans.","authors":"Hannah J Smith, Anne Lanjuin, Arpit Sharma, Aditi Prabhakar, Ewelina Nowak, Peter G Stine, Rohan Sehgal, Klement Stojanovski, Benjamin D Towbin, William B Mair","doi":"10.1371/journal.pgen.1010938","DOIUrl":"10.1371/journal.pgen.1010938","url":null,"abstract":"<p><p>mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleiotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10300941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-18eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010932
Nurlan Kerimov, Ralf Tambets, James D Hayhurst, Ida Rahu, Peep Kolberg, Uku Raudvere, Ivan Kuzmin, Anshika Chowdhary, Andreas Vija, Hans J Teras, Masahiro Kanai, Jacob Ulirsch, Mina Ryten, John Hardy, Sebastian Guelfi, Daniah Trabzuni, Sarah Kim-Hellmuth, William Rayner, Hilary Finucane, Hedi Peterson, Abayomi Mosaku, Helen Parkinson, Kaur Alasoo
{"title":"eQTL Catalogue 2023: New datasets, X chromosome QTLs, and improved detection and visualisation of transcript-level QTLs.","authors":"Nurlan Kerimov, Ralf Tambets, James D Hayhurst, Ida Rahu, Peep Kolberg, Uku Raudvere, Ivan Kuzmin, Anshika Chowdhary, Andreas Vija, Hans J Teras, Masahiro Kanai, Jacob Ulirsch, Mina Ryten, John Hardy, Sebastian Guelfi, Daniah Trabzuni, Sarah Kim-Hellmuth, William Rayner, Hilary Finucane, Hedi Peterson, Abayomi Mosaku, Helen Parkinson, Kaur Alasoo","doi":"10.1371/journal.pgen.1010932","DOIUrl":"10.1371/journal.pgen.1010932","url":null,"abstract":"<p><p>The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10310577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-15eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010940
Sounak Sahu, Teresa L Sullivan, Alexander Y Mitrophanov, Mélissa Galloux, Darryl Nousome, Eileen Southon, Dylan Caylor, Arun Prakash Mishra, Christine N Evans, Michelle E Clapp, Sandra Burkett, Tyler Malys, Raj Chari, Kajal Biswas, Shyam K Sharan
{"title":"Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants.","authors":"Sounak Sahu, Teresa L Sullivan, Alexander Y Mitrophanov, Mélissa Galloux, Darryl Nousome, Eileen Southon, Dylan Caylor, Arun Prakash Mishra, Christine N Evans, Michelle E Clapp, Sandra Burkett, Tyler Malys, Raj Chari, Kajal Biswas, Shyam K Sharan","doi":"10.1371/journal.pgen.1010940","DOIUrl":"10.1371/journal.pgen.1010940","url":null,"abstract":"<p><p>The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10265088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-15eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010954
Yue Zhai, Xin Zhang, Cheng Zhao, Ruijing Geng, Kun Wu, Mingzhe Yuan, Nana Ai, Wei Ge
{"title":"Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis.","authors":"Yue Zhai, Xin Zhang, Cheng Zhao, Ruijing Geng, Kun Wu, Mingzhe Yuan, Nana Ai, Wei Ge","doi":"10.1371/journal.pgen.1010954","DOIUrl":"10.1371/journal.pgen.1010954","url":null,"abstract":"<p><p>As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-β signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin βAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10316526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-14eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010911
Xiang Wen, Kaiyang Feng, Juan Qin, Peng Wei, Peng Cao, Youjun Zhang, Zhiguang Yuchi, Lin He
{"title":"A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval).","authors":"Xiang Wen, Kaiyang Feng, Juan Qin, Peng Wei, Peng Cao, Youjun Zhang, Zhiguang Yuchi, Lin He","doi":"10.1371/journal.pgen.1010911","DOIUrl":"10.1371/journal.pgen.1010911","url":null,"abstract":"<p><p>Understanding the mechanism of detoxification initiation in arthropods after pesticide exposure is crucial. Although the identity of transcription factors that induce and regulate the expression of detoxification genes in response to pesticides is beginning to emerge, whether transcription factors directly interact with xenobiotics is unclear. The findings of this study revealed that a nuclear hormone receptor, Tetranychus cinnabarinus hormone receptor (HR) TcHR96h, regulates the overexpression of the detoxification gene TcGSTm02, which is involved in cyflumetofen resistance. The nuclear translocation of TcHR96h increased after cyflumetofen exposure, suggesting direct binding with cyflumetofen. The direct binding of TcHR96h and cyflumetofen was supported by several independent proteomic assays that quantify interactions with small molecules. Together, this study proposes a model for the initiation of xenobiotic detoxification in a polyphagous agricultural pest. These insights not only provide a better understanding of the mechanisms of xenobiotic detoxification and metabolism in arthropods, but also are crucial in understanding adaptation in polyphagous herbivores.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10284328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-14eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010910
D Herbert Opi, Carolyne M Ndila, Sophie Uyoga, Alex W Macharia, Clare Fennell, Lucy B Ochola, Gideon Nyutu, Bethseba R Siddondo, John Ojal, Mohammed Shebe, Kennedy O Awuondo, Neema Mturi, Norbert Peshu, Benjamin Tsofa, Gavin Band, Kathryn Maitland, Dominic P Kwiatkowski, Kirk A Rockett, Thomas N Williams, J Alexandra Rowe
{"title":"Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria.","authors":"D Herbert Opi, Carolyne M Ndila, Sophie Uyoga, Alex W Macharia, Clare Fennell, Lucy B Ochola, Gideon Nyutu, Bethseba R Siddondo, John Ojal, Mohammed Shebe, Kennedy O Awuondo, Neema Mturi, Norbert Peshu, Benjamin Tsofa, Gavin Band, Kathryn Maitland, Dominic P Kwiatkowski, Kirk A Rockett, Thomas N Williams, J Alexandra Rowe","doi":"10.1371/journal.pgen.1010910","DOIUrl":"10.1371/journal.pgen.1010910","url":null,"abstract":"<p><p>Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that \"double dose\" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than \"single dose\" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10287711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-13eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010906
Abigail DiVito Evans, Regina A Fairbanks, Paul Schmidt, Mia T Levine
{"title":"Histone methylation regulates reproductive diapause in Drosophila melanogaster.","authors":"Abigail DiVito Evans, Regina A Fairbanks, Paul Schmidt, Mia T Levine","doi":"10.1371/journal.pgen.1010906","DOIUrl":"10.1371/journal.pgen.1010906","url":null,"abstract":"<p><p>Fluctuating environments threaten fertility and viability. To better match the immediate, local environment, many organisms adopt alternative phenotypic states, a phenomenon called \"phenotypic plasticity.\" Natural populations that predictably encounter fluctuating environments tend to be more plastic than conspecific populations that encounter a constant environment, suggesting that phenotypic plasticity can be adaptive. Despite pervasive evidence of such \"adaptive phenotypic plasticity,\" gene regulatory mechanisms underlying plasticity remains poorly understood. Here we test the hypothesis that environment-dependent phenotypic plasticity is mediated by epigenetic factors. To test this hypothesis, we exploit the adaptive reproductive arrest of Drosophila melanogaster females, called diapause. Using an inbred line from a natural population with high diapause plasticity, we demonstrate that diapause is determined epigenetically: only a subset of genetically identical individuals enter diapause and this diapause plasticity is epigenetically transmitted for at least three generations. Upon screening a suite of epigenetic marks, we discovered that the active histone marks H3K4me3 and H3K36me1 are depleted in diapausing ovaries. Using ovary-specific knockdown of histone mark writers and erasers, we demonstrate that H3K4me3 and H3K36me1 depletion promotes diapause. Given that diapause is highly polygenic, that is, distinct suites of alleles mediate diapause plasticity across distinct genotypes, we also investigated the potential for genetic variation in diapause-determining epigenetic marks. Specifically, we asked if these histone marks were similarly depleted in diapause of a genotypically distinct line. We found evidence of divergence in both the gene expression program and histone mark abundance. This study reveals chromatin determinants of phenotypic plasticity and suggests that these determinants may be genotype-dependent, offering new insight into how organisms may exploit and evolve epigenetic mechanisms to persist in fluctuating environments.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-13eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010942
Jiacheng Wang, Yaojia Chen, Quan Zou
{"title":"Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model.","authors":"Jiacheng Wang, Yaojia Chen, Quan Zou","doi":"10.1371/journal.pgen.1010942","DOIUrl":"10.1371/journal.pgen.1010942","url":null,"abstract":"<p><p>The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10597252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-12eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010946
Mickaël Maziero, David Lane, Patrice Polard, Mathieu Bergé
{"title":"Fever-like temperature bursts promote competence development via an HtrA-dependent pathway in Streptococcus pneumoniae.","authors":"Mickaël Maziero, David Lane, Patrice Polard, Mathieu Bergé","doi":"10.1371/journal.pgen.1010946","DOIUrl":"10.1371/journal.pgen.1010946","url":null,"abstract":"<p><p>Streptococcus pneumoniae (the pneumococcus) is well known for its ability to develop competence for natural DNA transformation. Competence development is regulated by an autocatalytic loop driven by variations in the basal level of transcription of the comCDE and comAB operons. These genes are part of the early gene regulon that controls expression of the late competence genes known to encode the apparatus of transformation. Several stressful conditions are known to promote competence development, although the induction pathways are remain poorly understood. Here we demonstrate that transient temperature elevation induces an immediate increase in the basal expression level of the comCDE operon and early genes that, in turn, stimulates its full induction, including that of the late competence regulon. This thermal regulation depends on the HtrA chaperone/protease and its proteolytic activity. We find that other competence induction stimulus, like norfloxacin, is not conveyed by the HtrA-dependent pathway. This finding strongly suggests that competence can be induced by at least two independent pathways and thus reinforces the view that competence is a general stress response system in the pneumococcus.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10220583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PLoS GeneticsPub Date : 2023-09-08eCollection Date: 2023-09-01DOI: 10.1371/journal.pgen.1010924
Vlastimil Smykal, Lenka Chodakova, Marketa Hejnikova, Kristina Briedikova, Bulah Chia-Hsiang Wu, Hana Vaneckova, Ping Chen, Anna Janovska, Pavlina Kyjakova, Martin Vacha, David Dolezel
{"title":"Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock.","authors":"Vlastimil Smykal, Lenka Chodakova, Marketa Hejnikova, Kristina Briedikova, Bulah Chia-Hsiang Wu, Hana Vaneckova, Ping Chen, Anna Janovska, Pavlina Kyjakova, Martin Vacha, David Dolezel","doi":"10.1371/journal.pgen.1010924","DOIUrl":"10.1371/journal.pgen.1010924","url":null,"abstract":"<p><p>TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10557029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}