Plant Cell, Tissue and Organ Culture最新文献

筛选
英文 中文
Development of a protocol for the micropropagation of two forest species threatened with extinction in Ecuador 制定厄瓜多尔两种濒临灭绝的森林物种的微繁殖协议
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-19 DOI: 10.1007/s11240-024-02864-9
E. Héctor, D. Cevallos, L. Corozo, F. Macías, O. Fosado
{"title":"Development of a protocol for the micropropagation of two forest species threatened with extinction in Ecuador","authors":"E. Héctor, D. Cevallos, L. Corozo, F. Macías, O. Fosado","doi":"10.1007/s11240-024-02864-9","DOIUrl":"https://doi.org/10.1007/s11240-024-02864-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p><i>Handroanthus chrysanthus</i> Jacq. S. O. Grose and <i>Tabebuia rosea</i> (Bertol.) Bertero ex A.DC are two forest species that grow in the coastal region of Ecuador and are threatened with extinction. A protocol for the mass multiplication of these species was developed using in vitro culture techniques. The cultures were initiated from seeds, and the effect of two culture media: Woody Plant Medium (WPM) and Murashige-Skoog (MS), two concentrations of NaClO (0.5% and 1%), and two disinfection times (3 and 5 min) was studied. During multiplication, the effect of three concentrations of two cytokinins: 6-benzylaminopurine (6-BAP) 4.4, 5.5, or 6.6 μM; kinetin 4.6, 5.75, or 6.9 μM) on the number of shoots, their length, and diameter was analyzed. This phase of the experiment was carried out in two successive multiplications. For rooting, two concentrations of indole-3-butyric acid (IBA) (2.45 and 4.9 μM) were tested, and the number of roots formed and their length were determined. It was demonstrated that the WPM medium is the most suitable for the in vitro culture of both species and that disinfection time and NaClO concentration affect each species differently. For the multiplication of <i>H. chrysanthus</i>, the most suitable cytokinin was 6-BAP 6.6 μM; <i>T. rosea</i> performed better in the absence of cytokinins. IBA 2.45 μM produced the best results for the rooting of <i>H. chrysanthus</i>, while for <i>T. rosea</i>, IBA 4.9 μM was the most suitable. The acclimatized plants showed a high survival rate, demonstrating the feasibility of using this methodology for the accelerated propagation of these endangered species.</p><h3 data-test=\"abstract-sub-heading\">Key message</h3><p>In this research, the culture medium requirements and conditions for the micropropagation of <i>H. chrysanthus</i> and <i>T. rosea</i> were fine-tuned. This technique can be implemented to obtain plants for use in reforestation.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of doubled haploids obtained by in vitro androgenesis in African marigold (Tagetes erecta L.) 非洲万寿菊(Tagetes erecta L.)通过体外雄性发生获得的加倍单倍体的特征
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-19 DOI: 10.1007/s11240-024-02851-0
Uzma Mehraj, Kanwar Pal Singh, Gunjeet Kumar, Sapna Panwar, Debasis Pattanayak, Niharika Mallick
{"title":"Characterization of doubled haploids obtained by in vitro androgenesis in African marigold (Tagetes erecta L.)","authors":"Uzma Mehraj, Kanwar Pal Singh, Gunjeet Kumar, Sapna Panwar, Debasis Pattanayak, Niharika Mallick","doi":"10.1007/s11240-024-02851-0","DOIUrl":"https://doi.org/10.1007/s11240-024-02851-0","url":null,"abstract":"<p>Doubled haploids have the great potential to enhance both breeding efficiency and genetic research in African marigold (<i>Tagetes erecta</i> L.). In order to obtain basic information about doubled haploids in African marigold, in the present study, we investigated the morphological characters in doubled haploids generated through anther culture. Screening of anther derived regenerants revealed that out of the 72 plants, 6 plants (8.33%) were found to be haploids (2n = x = 12), 66 plants (91.66%) were found to be diploids (2n = 2x = 24) similar to its donor parent. Six doubled haploid lines hence homozygous material were obtained by in vitro anther culture from African marigold genotype Af/R/L-1 which were subsequently characterised for various qualitative and quantitative traits. In terms of results, a single doubled haploid line was not superior for every attribute, and distinct doubled haploid lines were superior for different qualities associated to growth and flowering. Different growth rates and genetic makeup could be the cause of this.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing bioactive compounds in hairy roots culture of precious medicinal plant Eurycoma longifolia Jack. through LED elicitation 通过 LED 激发提高珍贵药用植物 Eurycoma longifolia Jack.
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-13 DOI: 10.1007/s11240-024-02856-9
Sale Sani, Mahmoud Ali Khalaf Abushattal, Sreeramanan Subramaniam, Nor Hasnida Hassan, Mohamad Fadhli Mad’ Atari
{"title":"Enhancing bioactive compounds in hairy roots culture of precious medicinal plant Eurycoma longifolia Jack. through LED elicitation","authors":"Sale Sani, Mahmoud Ali Khalaf Abushattal, Sreeramanan Subramaniam, Nor Hasnida Hassan, Mohamad Fadhli Mad’ Atari","doi":"10.1007/s11240-024-02856-9","DOIUrl":"https://doi.org/10.1007/s11240-024-02856-9","url":null,"abstract":"<p><i>Eurycoma longifolia</i> Jack. is a commercially valuable medicinal plant with clinically proven anti-cancer and aphrodisiac properties. To ensure the sustainability of the production of <i>E. longifolia</i> products on a commercial scale, hairy roots (HR) were engineered. In this study, we used light-emitting diodes (LEDs) as elicitation agents to enhance the synthesis of three (3) anticancer compounds (eurycomanone, 9-hydroxycanthin-6-one and 9-methoxycanthin-6-one). HR cultures were cultured for 12 weeks under four different LED treatments, including blue light (100%), red light (100%) and a combination of blue and red light (60%: 40%). In addition, a white LED was used as a control. The effects of the treatments on growth, synthesis and anti-cancer properties were determined. The results show a significant difference (p &lt; 0.05) between the treatments. The combination of blue and red LED produced the highest dried biomass of 0.316, 0.391 and 0.459 g/50mL at weeks 6, 8 and 10, respectively, which is 2.2, 1.7 and 1.5 times that of the white LED. In addition, the red LED produced the highest level of eurycomanone at the 8th and 12th week of culture, the combination of blue and red LED produced the highest level of 9-hydroxycanthin-6-one at the 8th and 12th week of culture, and 9-methoxycanthin-6-one at the 4th and 8th week of culture. The MTT assay showed significant activity of the crude extracts from all treatments against MCF-7 cancer cells. These results indicate that LED excitation is a promising technique for the production of anticancer agents from HR cultures of <i>E. longifolia</i>.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro morphogenesis, cryopreservation and induction of variability in bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara): a review 出血心(Lamprocapnos spectabilis (L.) Fukuhara)的体外形态发生、冷冻保存和变异性诱导:综述
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-12 DOI: 10.1007/s11240-024-02854-x
Dariusz Kulus
{"title":"In vitro morphogenesis, cryopreservation and induction of variability in bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara): a review","authors":"Dariusz Kulus","doi":"10.1007/s11240-024-02854-x","DOIUrl":"https://doi.org/10.1007/s11240-024-02854-x","url":null,"abstract":"<p>This review explores recent advances in the biotechnology of <i>Lamprocapnos spectabilis</i> (L.) Fukuhara (commonly known as bleeding heart), a valuable ornamental-medicinal perennial. The article covers in vitro morphogenesis, cryopreservation techniques, and methods for inducing variability. The establishment of in vitro cultures utilized Murashige and Skoog medium enriched with various auxins, cytokinins, gold nanoparticles, and plant extracts, under both fluorescent and wide-spectrum LED lighting. Axillary bud activation and indirect somatic embryogenesis were more efficient, particularly in the presence of kinetin and picloram, respectively, compared to adventitious shoot regeneration. Significant cultivar differences were observed, with ‘Valentine’ being the easiest and ‘White Gold’ the most challenging to culture in vitro. To mitigate stress caused by classical growth regulators, alternative substances such as nanoparticles and natural extracts were used. Gold nanoparticles enhanced shoot proliferation and plantlet quality, while coconut and rice extracts improved survival rates during acclimatization. Enhanced metabolite production was achieved using exogenous auxins and gold nanoparticles. Guaiacol peroxidase was identified as a sensitive oxidative stress marker, with glutathione reductase being the most stable under stress. Cryogenic techniques incorporating explant encapsulation, i.e. encapsulation-vitrification, showed high effectiveness and genetic stability of plants, with nanomaterials boosting effectiveness. Coconut extract also enhanced <i>post</i>-thaw shoot proliferation, while sesame extract served as a natural retardant for slow-growth cultures. Mutagenic effectiveness ranked as microwaves &lt; nanoparticles &lt; X-rays. Comprehensive genetic variability insights were provided by integrating multiple SPAR marker systems. This review underscores the promising biotechnological advancements for <i>L. spectabilis</i>, emphasizing the potential of in vitro techniques, innovative cryopreservation methods, and the application of nanoparticles and plant extracts to enhance micropropagation, genetic variability, and metabolite production, thereby contributing to the conservation and commercial sustainability of this valuable ornamental-medicinal perennial.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro asymbiotic seed germination and seedling development of four endangered Ecuadorian orchids: Epidendrum Jamiesonis, Pleurothallis pulchella, Oncidium pentadactylon, and Elleanthus capitatus 四种厄瓜多尔濒危兰花的离体共生种子萌发和幼苗发育:Epidendrum Jamiesonis、Pleurothallis pulchella、Oncidium pentadactylon 和 Elleanthus capitatus
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-12 DOI: 10.1007/s11240-024-02841-2
Nathalia Valencia-Glushchenko, Claudia G. Oña-Arias, Miguel Orellana, Mayra Ortega, Andrea Montero-Oleas, Maria de Lourdes Torres
{"title":"In vitro asymbiotic seed germination and seedling development of four endangered Ecuadorian orchids: Epidendrum Jamiesonis, Pleurothallis pulchella, Oncidium pentadactylon, and Elleanthus capitatus","authors":"Nathalia Valencia-Glushchenko, Claudia G. Oña-Arias, Miguel Orellana, Mayra Ortega, Andrea Montero-Oleas, Maria de Lourdes Torres","doi":"10.1007/s11240-024-02841-2","DOIUrl":"https://doi.org/10.1007/s11240-024-02841-2","url":null,"abstract":"<p>Although Ecuador is one of the richest places in the world in terms of biodiversity of species belonging to the Orchidaceae family, some of its species are endangered. The main factors that are threatening orchid species include destruction of their habitat, inadequate management of resources, environmental contamination, and overcollection of specimens. Each orchid capsule contains thousands of seeds; however, only 2–3% germinate under natural conditions. The limited germination is attributed to factors such as the lack of seed endosperm and the need for symbiotic relationships with mycorrhizae. The in vitro orchid culture may be a strategy to achieve their efficient propagation and thus contribute to their conservation. This study reports protocols for in vitro seed germination in four species of Ecuadorian orchids: two epiphytic species, <i>Epidendrum jamiesonis</i> and <i>Oncidium pentadactylon</i>, and two terrestrials, <i>Pleurothallis pulchella</i> and <i>Elleanthus capitatus</i>. A germination percentage higher than 30% was observed in all species, which led to successful seedling development. For <i>Epidendrum jamiesonis</i>, effective elongation and acclimatization stages are also reported. The plants obtained from the in vitro asymbiotic culture described here could promote conservation programs and serve as a reference for the culture of other orchid species.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of chromosomal aberrations with ectopic expression of native BABY BOOM1 (GmBBM1) in soybean 在大豆中异位表达原生 BABY BOOM1(GmBBM1)诱导染色体畸变
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-11 DOI: 10.1007/s11240-024-02853-y
Caner Yavuz, Ahmet L. Tek, Mehmet Emin Çalışkan
{"title":"Induction of chromosomal aberrations with ectopic expression of native BABY BOOM1 (GmBBM1) in soybean","authors":"Caner Yavuz, Ahmet L. Tek, Mehmet Emin Çalışkan","doi":"10.1007/s11240-024-02853-y","DOIUrl":"https://doi.org/10.1007/s11240-024-02853-y","url":null,"abstract":"<p>Haploid induction is of great importance in the breeding of cross-pollinated crops such as maize, and it also expedites the development of new varieties in a shorter period in self-pollinated crops, i.e. soybean. The success rate of traditional techniques is almost negligible at less than 1%, and their applicability is dependent on external factors in soybean. There is a lack of standardized and reproducible systems, which makes it challenging to adopt the existing systems for haploid plant production. Therefore, there is a high demand for implementing innovative approaches for this crop due to the limitations of conventional methods. The <i>BABY BOOM (BBM)</i> gene, which generated haploidy at high rates (&gt; 80%) when expressed in pearl millet or through ectopic expression in the egg cells of rice, maize, and tobacco, is a novel example with promising potential. In this study, we used the egg cell-specific promoter <i>DD45</i>, which was cloned from Arabidopsis, to ectopically express the native soybean <i>BBM1</i> (<i>GmBBM1</i>) gene in soybean to observe the response to haploidy induction. Initially, the clone <i>pDD45:GmBBM1</i> was successfully constructed and confirmed by PCR and Sanger sequencing. The construct was subsequently transformed into soybean via a half-seed approach. The expression of <i>GmBBM1</i> in both flowers and leaves increased in the T<sub>0</sub> transgenic soybean lines. The T<sub>0</sub> plants and their seeds showed developmental abnormalities described by early senescence and flowering; however, the T<sub>1</sub> plants exhibited normal growth characteristics. The ploidy levels of the T<sub>1</sub> and T<sub>2</sub> plants were determined by flow cytometry and chromosome counting. The flow cytometry histograms revealed haploidy in the T<sub>1</sub> generation; however, further chromosome counting in T<sub>2</sub> plants revealed changes in chromosome number, and aneuploidy, which may be due to spontaneous doubling. This system is especially important in legume crops, as no reports exist on the application of the <i>BBM1</i> system in soybean. Our study will provide valuable insights for future research and advancing soybean breeding with haploid induction.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant peptide hormone phytosulfokine promotes embryo development of mass in Pinus massoniana 植物肽荷尔蒙植物磺胺素促进马尾松胚胎发育
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-11 DOI: 10.1007/s11240-024-02857-8
Qunfeng Luo, Shan Hu, Zhaolei Deng, Zhenjun Gu, Qian Liu, Guang Zhou, Qiang Du, Chunxia Yang
{"title":"Plant peptide hormone phytosulfokine promotes embryo development of mass in Pinus massoniana","authors":"Qunfeng Luo, Shan Hu, Zhaolei Deng, Zhenjun Gu, Qian Liu, Guang Zhou, Qiang Du, Chunxia Yang","doi":"10.1007/s11240-024-02857-8","DOIUrl":"https://doi.org/10.1007/s11240-024-02857-8","url":null,"abstract":"<p><i>Pinus massoniana</i> is a critical afforestation and ecological tree species in China. However, the continued existence of this pine is severely threatened by pine wilt disease. Somatic embryogenesis serves as a highly efficient clonal propagation approach. Although significant progress has been made in somatic embryogensis research on <i>P. massoniana</i>, resulting in the successful regeneration of plants, the limited embryogenic potential of improved cell lines and loss of embryogenic properties resulting from prolonged proliferation have posed obstacles to the industrialization of SE production. In this study, we investigated the effect of phytosulfokine on embryo development of cell lines from <i>P. massoniana</i> which lead to a cascade of physicochemical changes. Eight embryogenic cell lines of <i>P. massoniana</i> were used to observe phenotype and cytological changes. Physiological factors and the contents of nutrients and endogenous hormones were measured before and after phytosulfokine addition. We found that PSK promoted a change in the embryogenic mass of <i>P. massoniana</i>, leading to their development from pro-embryogenic mass (PEM)I to PEMII or PEMIII stages of pro-embryos. In addition, PSK accumulated soluble sugar, protein, and starch, and maintained redox homeostasis during cell line proliferation by reducing H<sub>2</sub>O<sub>2</sub> levels. Our findings increase our understanding of how PSK affects somatic embryogensis in <i>P. massoniana</i>, thereby providing a valuable tool for establishing efficient somatic embryogensis systems in conifer species.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-Topolin induced highly efficient plant regeneration from various explants of eggplant (Solanum melongena L.) 元多肽诱导茄子(Solanum melongena L.)各种外植体的高效植株再生
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-03 DOI: 10.1007/s11240-024-02850-1
Kranthikumar Gande, Vasudha Marapaka, Phanikanth Jogam, Venkataiah Peddaboina
{"title":"Meta-Topolin induced highly efficient plant regeneration from various explants of eggplant (Solanum melongena L.)","authors":"Kranthikumar Gande, Vasudha Marapaka, Phanikanth Jogam, Venkataiah Peddaboina","doi":"10.1007/s11240-024-02850-1","DOIUrl":"https://doi.org/10.1007/s11240-024-02850-1","url":null,"abstract":"<p>Eggplant (<i>Solanum melongena</i> L.) is one of the essential vegetables worldwide, and cultivated genotypes of eggplant suffer from numerous abiotic and biotic stresses. A reproducible and efficient plant regeneration system is crucial for applying molecular breeding methods to overcome the difficulties of conventional breeding programs to improve eggplant germplasm, such as genetic transformation and genome editing techniques. The three explant types, cotyledon, hypocotyl, and leaf, were obtained from two different cultivars, Pusa purple long (PL) and Pusa green round (GR) of eggplant. Three explants were cultivated on media augmented with a variety of cytokinins, including BAP, <i>m</i>T, and ZEA, in different concentrations. The media supplemented with <i>m</i>T at 8.28 µM generated the highest number of shoots, which showed the optimum regeneration efficiency for all three explants in two eggplant genotypes. The cotyledon explants generated the optimum number of shoot buds on the medium amended with low concentrations of BAP (2.22 µM), KIN (2.32 µM), and ZEA (4.56 µM), and <i>m</i>T at 8.28 µM. The <i>m</i>T (8.28 µM) and BAP at 2.22 µM combinations produced 25.8 and 18.3 shoots in PL and GR genotypes, respectively. The addition of various concentrations of IAA (1.43 to 5.71 µM), IBA (1.23 to 4.92 µM), and NAA (1.34 to 5.37 µM) in combination with <i>m</i>T (8.28 µM) were evaluated to find out their role on the induction and proliferation of numerous shoot buds from cotyledon explants of two cultivars of eggplant. The medium augmented with <i>m</i>T (8.28 µM) and IAA (2.85 µM) produced 26.4 shoots and 17.8 shoots in cotyledon explants of PL and GR cultivars, respectively. The optimum rooting efficiency of shoots was recorded on the medium containing the IAA (5.71 µM) and produced complete plantlets. The plantlets showed 100% similarity with their mother plants.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GmCOL4-GmZTL1 interaction co-regulates GmSBH1 to improve seed deterioration under high temperature and humidity stress and affect leaf development GmCOL4-GmZTL1 相互作用共同调控 GmSBH1 以改善高温高湿胁迫下的种子劣变并影响叶片发育
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-09-02 DOI: 10.1007/s11240-024-02817-2
Kebin Mu, Yingjie Shu, Ming Chen, Keke Chen, Yuxin Peng, Huimin Hu, Yingzi Shen, Xi Zhang, Lifang Zhuang, Hao Ma
{"title":"GmCOL4-GmZTL1 interaction co-regulates GmSBH1 to improve seed deterioration under high temperature and humidity stress and affect leaf development","authors":"Kebin Mu, Yingjie Shu, Ming Chen, Keke Chen, Yuxin Peng, Huimin Hu, Yingzi Shen, Xi Zhang, Lifang Zhuang, Hao Ma","doi":"10.1007/s11240-024-02817-2","DOIUrl":"https://doi.org/10.1007/s11240-024-02817-2","url":null,"abstract":"<p>BBX transcription factors have a transcriptional regulatory role in response to light, circadian cues, and brassinosteroid-light crosstalk signaling. However, the functions of BBX in soybean resistance to seed deterioration have not been shown. In our previous study, a soybean gene <i>GmSBH1</i> and a HSE cis-element of <i>GmSBH1</i> promoter were found in response to high temperature and humidity (HTH) stress. GmCOL4 was a candidate protein, which bound to HSE cis-element. In the present study, <i>GmCOL4</i> was isolated and characterized. Subcellular localization and transcriptional activation assays showed that GmCOL4 was a nuclear protein with transcriptional activation function. The BBOX2 domain was found to play an obvious role in transcriptional activation activity of GmCOL4. Furthermore, GmCOL4 interacted with GmZTL1 was confirmed in vivo and in vitro. <i>GmCOL4</i> and <i>GmZTL1</i> presented different expression patterns among diverse soybean tissues and were synergistically involved in response to HTH stress in developing seeds. Overexpression of <i>GmCOL4</i> and <i>GmZTL1</i> could alter tobacco phenotypes and enhance developing seed tolerance to seed deterioration under HTH stress. Based on these results, a regulation network was conjectured, GmCOL4 interacts with GmZTL1 to co-regulate the <i>GmSBH1</i> via directly binding to the HSE cis-element, thereby enhancing the soybean resistance to seed deterioration under HTH stress and affecting leaf development.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro adventitious root culture system for optimal production of genistein in soybean (Glycine max L. Merrill) 优化大豆(Glycine max L. Merrill)染料木素生产的体外不定根培养系统
IF 3 3区 生物学
Plant Cell, Tissue and Organ Culture Pub Date : 2024-08-28 DOI: 10.1007/s11240-024-02840-3
Nandakumar Vidya, Krishnagowdu Saravanan, Rajkumar Vasanthkumar, Packiaraj Gurusaravanan, Ramalingam Radhakrishnan, Chinnaswamy Appunu, Muthukrishnan Arun
{"title":"In vitro adventitious root culture system for optimal production of genistein in soybean (Glycine max L. Merrill)","authors":"Nandakumar Vidya, Krishnagowdu Saravanan, Rajkumar Vasanthkumar, Packiaraj Gurusaravanan, Ramalingam Radhakrishnan, Chinnaswamy Appunu, Muthukrishnan Arun","doi":"10.1007/s11240-024-02840-3","DOIUrl":"https://doi.org/10.1007/s11240-024-02840-3","url":null,"abstract":"<p>Soybean (<i>Glycine max</i> (L.) Merrill) contains isoflavones, and in particular genistein, which have clinically proven roles. As a result, this bioactive compound is greatly valued in the pharmaceutical industry. Hence, this study was aimed to develop an adventitious root culture system for the production of soy isoflavones (genistein) using hypocotyl explants. In solid culture system, auxin (IAA, 0–57.0 µM; NAA, 0–53.7 µM; and IBA, 0–49.2 µM), media strength (¼x, ½x, ¾x, 1x, and 2x) and in the liquid culture system, IBA (0–49.2 µM), media strength (¼x, ½x, ¾x, 1x, and 2x), and sugars (glucose, fructose, and sucrose) were optimized. After 30 days of culture, IBA at 39.3 µM demonstrated the maximum response in root parameters, with the 1x solid MS medium showing improved root parameters compared to other medium strengths. For liquid system culture optimization, full strength MS medium supplemented with 39.3 µM IBA showed the highest root biomass in liquid medium. Among sucrose concentrations, the highest accumulation of root biomass was observed at 3% (3.87 g flask <sup>− 1</sup>) followed by 4% (3.65 g flask <sup>− 1</sup>), however, 4% sucrose proved favorable for genistein synthesis (9.34 mg g<sup>− 1</sup> DW) compared to 3% (6.29 mg g<sup>− 1</sup> DW). Additionally, the maximum levels of phenolic and flavonoid content were observed at 4% sucrose, correlating with higher antioxidant activities in DPPH and FRAP assays. Gene expression analysis of isoflavone biosynthetic genes revealed higher levels of expression at 4% sucrose compared to the control. These results underscore the crucial role of determining the optimum culture conditions and the effect of sucrose in enhancing root biomass and genistein content in soybean adventitious root cultures.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信