Proceedings of the European Wave and Tidal Energy Conference最新文献

筛选
英文 中文
Performance Enhancement of Fluidic Diode for a Wave Energy System through Genetic Algorithm 用遗传算法增强波能系统的流控二极管性能
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-182
Emeel Kerikous, Doddamani Hithaish, Abdus Samad, S. Hoerner, Dominique Thévenin
{"title":"Performance Enhancement of Fluidic Diode for a Wave Energy System through Genetic Algorithm","authors":"Emeel Kerikous, Doddamani Hithaish, Abdus Samad, S. Hoerner, Dominique Thévenin","doi":"10.36688/ewtec-2023-182","DOIUrl":"https://doi.org/10.36688/ewtec-2023-182","url":null,"abstract":"The oscillating water column (OWC) is an extensively studied wave energy converter that produces pneumatic power from the motion of the sea waves, which can be harvested using a pair of turbines without additional devices. However, its efficiency is hampered by poor flow blockage. Researchers have proposed a fluidic diode (FD) to improve flow blockage. Its performance is given by diodicity, which is the ratio of pressure drop in reverse to forward flow. A higher resistance in the reverse path signifies enhanced flow blockage, while a lower resistance in the forward flow minimises power loss at the turbine entry. In the present study, the numerical investigation was performed by solving three-dimensional unsteady Reynolds-Averaged Navier Stokes equations using ANSYS-Fluent 16.1 to simulate the flow behaviour inside the FD. Five geometrical parameters for FD were varied to obtain its optimal shape leading to a lower pressure drop in the forward direction and higher in reverse. The optimal shape was obtained through the genetic algorithm, showing a 12% improvement in performance compared to the base model. Detailed fluid flow and performance analysis of both base and optimum models are presented in this article.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115855833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-analytical and CFD formulations of a spherical floater 球形浮子的半解析式和CFD公式
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-198
Spyridon Mavrakos, Spyridon Zafeiris, Georgios Papadakis, Dimitrios Konispoliatis
{"title":"Semi-analytical and CFD formulations of a spherical floater","authors":"Spyridon Mavrakos, Spyridon Zafeiris, Georgios Papadakis, Dimitrios Konispoliatis","doi":"10.36688/ewtec-2023-198","DOIUrl":"https://doi.org/10.36688/ewtec-2023-198","url":null,"abstract":"Today, humanity is facing the great pressure of fossil fuels exhaustion and environmental pollution. This obliges governments and industries to make accelerated efforts on producing green energy. The focus is spotted on marine environment which is a vast source of renewable energy. Among several classes of designs proposed for wave energy conversion, spherical Wave EnergyConverters (WECs) have received considerable attention. The problems of water wave diffraction and radiation by a sphere has been examined by a substantial amount of literature, i.e., [1]–[4], whereas in [5]–[8] linear hydrodynamic effects on a spherical WEC have been examined. All these research works are based on potential flow methodologies. Nevertheless, overthe last decade there has been a significant interest on Computational Fluid Dynamics CFD modelling due to its detailed results, focusing also to spherical WECs [9]–[10].In the present work a semi-analytical model is applied to solve the wave radiation problem around a spherical WEC (Figure 1), in the context of linear potential theory. The outcomes of the theoretical analysis are supplemented and compared with high fidelity CFD simulations (Figure 2 for a semi-submerged sphere). Furthermore, the two methodologies are compared with a theoretical approach for the hydrodynamic analysis of floating bodies with vertical axis as being presented in [11]. The method is based on the discretization of the flow field around the body using coaxial ring elements, which are generated from the approximation of the sphere’s meridian line by a stepped curve.Numerical results are given from the comparison of the three formulations, and some interesting phenomena are discussed concerning the viscous effects on the floater. \u0000[1] Havelock, T. H. 1955. Wave due to a floating sphere making periodic heaving oscillations. R. Soc. London,A231, 1-7.[2] Hulme, A. 1982. The wave forces acting on a floating hemisphere undergoing force periodic oscillation. J. FluidMech., 121, 443-463.[3] Wang, S. 1986. Motions of a spherical submarine in waves. Ocean Engng., 13, 249-271.[4] Wu, G.X. 1995. The interaction of water waves with a group of submerged spheres. Appl. Ocean. Res., 17, 165-184.[5] Srokosz, M.A. 1979. The submerged sphere as an absorber of wave power. J. Fluid Mech., 95, 717-741.[6] Thomas, G.P., Evans, D.V. 1981. Arrays of three-dimensional wave energy absorbers. J. Fluid Mech., 108, 67-88.[7] Linton, C.M. 1991. Radiation and diffraction of water waves by a submerged sphere in finite depth. Ocean Engng.,18, 61-74.[8] Meng, F., et al. Modal analysis of a submerged spherical point absorber with asymmetric mass distribution.Renew. Energy 130, 223-237.[9] Shami, E.A., et al. 2021. Non-linear dynamic simulations of two-body wave energy converters via identificationof viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation.Renew. Energy, 179, 983-997.[10] Katsidoniotaki, E., et al. 2023. Valida","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115906665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrodynamic studies of a 15 MW semi-submersible FOWT to assess the suitability of the inclusion of a damper system 对15mw半潜式FOWT进行了水动力研究,以评估包含阻尼系统的适用性
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-497
Yu Gao, Chenyu Zhao, Lars Johanning, Ajit C Pillai
{"title":"Hydrodynamic studies of a 15 MW semi-submersible FOWT to assess the suitability of the inclusion of a damper system","authors":"Yu Gao, Chenyu Zhao, Lars Johanning, Ajit C Pillai","doi":"10.36688/ewtec-2023-497","DOIUrl":"https://doi.org/10.36688/ewtec-2023-497","url":null,"abstract":"Floating Offshore Wind Turbines (FOWT) can exploit the high energy density found in the offshore environment, with turbines now reaching up to 15 MW in size. At the same time, however, the energetic environment and the massive size of the device present significant challenges in the motion stabilization and mooring system. To overcome these challenges, a tuned mass damper (TMD) has been considered for integration in the FOWT for peak motion reduction. This paper investigates the baseline responses including motion, dynamic response, and tensile loading of the mooring line for a 15MW FOWT on a semi-submersible platform without TMD to identify the damageable motion and the impacts of the TMD on the motion response under wave-wind environmental loadings. The comprehensive analysis is conducted in a package for the dynamic analysis of offshore marine systems, named as Orcaflex. The dynamic and motion characteristics of the 15MW FOWT are analysed and compared under different environmental parameters. The wave and wind parameters are quantified by the 20-years statistical data of the Celtic Sea including both operational and extreme conditions (with a 50-year return period).\u0000Subsequently, the key parameters of TMD are investigated by configuring different combinations of mass, damping coefficients and stiffnesses. The preliminary results of the study show that the TMD system can successfully mitigate extreme motion characteristics, however this is strongly dependent on damping properties. Unsuitable TMD designs may increase the motion responses of FOWT and the tensile loading on the mooring line. Therefore, the TMD properties have to be adjusted based onsite environmental conditions). With this consideration, an active TMD with changeable damping properties will be conducted in future research.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116361550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Test rig for submerged transmissions in wave energy converters as a development tool for dynamic sealing systems 作为动力密封系统开发工具的波浪能转换器水下传输试验台
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-576
Anthon Jonsson, E. Strömstedt
{"title":"Test rig for submerged transmissions in wave energy converters as a development tool for dynamic sealing systems","authors":"Anthon Jonsson, E. Strömstedt","doi":"10.36688/ewtec-2023-576","DOIUrl":"https://doi.org/10.36688/ewtec-2023-576","url":null,"abstract":"A submerged transmission, fitted with a dynamic sealing system, in a wave energy converter (WEC) serves the purpose of transmitting the force, absorbed by a wave activated body, to an encapsulated power take-off (PTO) system, while preventing seawater from entering the capsule. Dry generator operation is generally a prerequisite for attaining long technical service life. Little attention seems to be devoted in publications to the study of dynamic sealing systems in WECs, and to test rigs for experimental verification and/or evaluation of the ability/performance of existing dynamic sealing systems in a controlled laboratory environment. This paper begins by presenting some of our earlier research within the focus area of dynamic sealing systems, incl. design considerations and typical operating conditions. This part also presents the 1st laboratory test rig, used for verifying the sealing ability of the piston rod mechanical lead-through design in the 1st and 2nd full-scale experimental WEC prototype from Uppsala University. In 2021 project DynSSWE (Dynamic Sealing Systems for Wave Energy) was initiated. Drawing from experience, the project includes development of a new test rig, representing a tool for further development of dynamic sealing systems. This paper introduces steps in the design and development process of that new test rig, enabling accelerated long-term test runs with a setup of multiple piston rod specimens. The test specimens’ will be surface treated differently with the aim of improving the prospects of a long maintenance free service life. Since the new test rig is in the design stage, seal testing results are not yet reported. The presented work is funded by the Swedish energy agency with the aim of improving subsystem performance in wave energy devices.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117088679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of wave energy into Energy Systems: an insight to the system dynamics and ways forward 波浪能与能源系统的整合:对系统动力学和前进方向的洞察
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-157
G. Lavidas, Felix Delgado Elizundia, K. Blok
{"title":"Integration of wave energy into Energy Systems: an insight to the system dynamics and ways forward","authors":"G. Lavidas, Felix Delgado Elizundia, K. Blok","doi":"10.36688/ewtec-2023-157","DOIUrl":"https://doi.org/10.36688/ewtec-2023-157","url":null,"abstract":"Wave energy is a rich and highly accessible renewable energy resource, that has largely been under-developed. Studies from the sector have tried to show the potential of benefits wave energy in “simple cases” or via small hybrid systems, the large scale incorporation of wave energy has not yet been fully investigated. Our approach uses a fully dynamic climate driven energy system model, which has undergone modifications to include wave energy converters and their associated dependencies. \u0000This study explores the system dynamics and important elements that will be used for large scale wave energy integration; in a fully coupled European Energy System. We explore the cost pathways of different wave energy converters, the impact of climate data, and the impact of transmission capacity expansion under cost-optimal configurations of a multi-renewable European power system. From this preliminary approach we aim to provide the boundary conditions, and assumptions that will govern the integration of wave energy into the European Energy System up to 2050.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114508653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origami-adapted clam design for wave energy conversion 波浪能量转换的折纸蛤设计
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-329
Jingyi Yang, Zhong You, Shanshan Cheng, Xinu Wang, Krishnendu Puzhukkil, Malcolm Cox, Rod Rainey, John Chaplin, Deborah Greaves
{"title":"Origami-adapted clam design for wave energy conversion","authors":"Jingyi Yang, Zhong You, Shanshan Cheng, Xinu Wang, Krishnendu Puzhukkil, Malcolm Cox, Rod Rainey, John Chaplin, Deborah Greaves","doi":"10.36688/ewtec-2023-329","DOIUrl":"https://doi.org/10.36688/ewtec-2023-329","url":null,"abstract":"The Clam wave energy converter (WEC) is a floating device composed of two side plates connected by a hinge that closes and opens under interaction with wave crests and troughs. A linear power take-off (PTO) may be installed between the two side plates to convert the mechanical motions to electricity, or the volume change may be used to pump air between chambers and across an air turbine PTO. The basic concept has been discussed since 1978 and featured as part of the UK Wave Energy research programme [1]. Some simplified clam models have been built since then and preliminary investigations were conducted by Phillips [2] to understand the wave-structure interactions at the COAST laboratory, University of Plymouth. However, the simplified models were not enclosed and hence seawater can be trapped in the device. To further the investigation, we will design the outer shell of the clam model that is enclosed and thus suitable for use in the (adverse) marine environment.   \u0000Since no enclosed flexible polyhedral structure can change its volume without bending or stretching of facets according to the bellows conjecture, the clam model must be strained when it is in motion. A portion of the wave energy will be consumed to deform the outer shell of the clam model and the rest can be captured by the PTO. Therefore, the design of the clam model will aim at minimising the strain on its facets while achieving the largest volumetric change of the device to maximise the power extraction by the PTO. \u0000Inspired by origami, we will construct the enclosed clam-type offshore device by connecting rigid panels and elastic membranes with rotational hinges. We model the rigid panels to rotate about the hinges without facet deformation and allow stretching on elastic membranes. The strain on the elastic material shall be minimised for better structural integrity and minimal energy loss. Satisfying all the design requirements, the best geometric design is obtained through an optimisation process. Based on the optimised geometry, a downscaled prototype will be built using rigid plywood and rubber membranes and tested under dynamic wave-induced loads to prove that the strain incurred is negligible in response to forces. \u0000  \u0000References: \u0000[1] Peatfield, A. M., Duckers, L. J., Lockftt, F. P., Loughridge, B. W., West, M. J., & White, P. R. S. (1984). The SEA-Clam wave energy converter. In Energy Developments: New Forms, Renewables, Conservation (pp. 137-142). Pergamon. \u0000[2] Phillips, J. W. (2017). Mathematical and Physical Modelling of a Floating Clam-type Wave Energy Converter (Doctoral dissertation, University of Plymouth).","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116240532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Feature and Seawater Testing of Cross-Flow Rotor Components Fabricated with Additive Manufacturing 增材制造交叉流转子部件的临界特性及海水试验
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-222
James McVey, John Zaengle, Robert Cavagnaro, Michelle Fenn, Brittnee Lommers, Chris Rumple
{"title":"Critical Feature and Seawater Testing of Cross-Flow Rotor Components Fabricated with Additive Manufacturing","authors":"James McVey, John Zaengle, Robert Cavagnaro, Michelle Fenn, Brittnee Lommers, Chris Rumple","doi":"10.36688/ewtec-2023-222","DOIUrl":"https://doi.org/10.36688/ewtec-2023-222","url":null,"abstract":"Cross-flow tidal turbines are an attractive option for powering remote or off-grid applications because of their simplicity as compared to axial-flow turbines. For instance, when oriented vertically, they harvest power from any current direction with a single degree of freedom and no yaw mechanism. Additive manufacturing (AM) offers an opportunity to print parts out of a wide variety of materials that can result in components that are lighter, stronger and/or less expensive to produce than with traditional manufacturing techniques. When coupled with cross-flow turbine rotors, which require critical features (blade-strut, strut-shaft connections) to be both structurally stiff and hydrodynamically shaped, which can be challenging for typical fabrication processes, AM offers the ability to do both well. This paper describes work on the feasibility of using advanced AM techniques to fabricate small cross-flow turbine rotors for applications at sea and near remote coastal communities. \u0000AM materials were categorized into 3 classes – plastics, metals, and ceramics – and reviewed for suitability based on a set of engineering requirements and criteria related to turbine characteristics, material properties, and AM process capabilities. Two plastics and two metals were selected to undergo further testing: Essentium CF25, CarbonX Ult 9085, Titanium Ti-6Al-4V, and Inconel 718. Testing is conducted in three phases: the first is a long-term, 5-month submersion test in the seawater tanks at PNNL-Sequim to study corrosion, water uptake, and biofouling potential; in the second, materials are tensile tested on a load frame to find their failure parameters to compare to material standards; the third test is a fatigue test consisting of cyclically loading test parts with a known force on the order of that exerted on rotor blades in a 1.5 m/s current flow. These tests are designed to discern the suitability of AM materials since their properties from 3D printing processes are known to vary from published parameters. The test samples undergoing submersion testing will be tension tested and compared to control samples not subjected to extended seawater immersion. For fatigue life testing, a small rotor is expected to complete 100 million cycles over the course of a year-long lifespan, but for the case herein is restricted to 1 million for a preliminary performance evaluation. The first 10k cycles are run on an MTS 312.21 load frame at a rate of 0.2 Hz, with the remaining on a custom-built cyclic-deflection test rig at 0.8 Hz.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116242723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrodynamic and Static Stability Analysis of a Hybrid Offshore Wind-Wave Energy Generation 混合式海上风浪发电的水动静态稳定性分析
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-628
Payam Aboutalebi, A. Garrido, I. Garrido, Dong Trong Nguyen, Zhen Gao
{"title":"Hydrodynamic and Static Stability Analysis of a Hybrid Offshore Wind-Wave Energy Generation","authors":"Payam Aboutalebi, A. Garrido, I. Garrido, Dong Trong Nguyen, Zhen Gao","doi":"10.36688/ewtec-2023-628","DOIUrl":"https://doi.org/10.36688/ewtec-2023-628","url":null,"abstract":"Marine structures like Floating Wind Turbine (FWT) is exposed to the oncoming waves and wind that can cause oscillatory motions within the system. These undesired oscillations can have negative impacts on the efficiency of the system, reduce its lifespan, hinder energy extraction, increase stress levels, and raise maintenance costs. To mitigate these negative impacts, the integration of Wave Energy Converters (WECs) into the FWT system has been proposed. This hybrid system may be capable of extracting coupled wind-wave energy and transferring electrical power to the shared grid. This paper presents an investigation of the use of Oscillating Water Columns (OWCs), a type of WECs, within a FWT system. The purpose of using an OWC to increase the hydrodynamic damping and reduce the resonant motions of the floating wind turbines under environmental loads, including both wind and wave loads. This is because the wave energy from OWC would be very small as compared to the wind energy. However, OWCs can provide a damping source for reducing the resonant motions of the floater, especially the pitch resonant motions. This would be very beneficial for the power performance of the floating wind turbine and the structural design of the floater. The purpose of this paper is to redesign the original FWT platform to accommodate the additional OWCs by considering the hydrostatic stability and hydrodynamics since the new elements, the OWCs, can significantly change the response of the platform. The redesign of the original FWT involves the integration of OWCs within two out of three columns of an existing semisubmersible platform for a 12 MW FWT. To do this, two moonpools, which are consistent with OWC air chambers, have been created within two columns of the FWT. The water ballast was designed for the columns with and without OWCs. After that the redesign is done hydrostatic stability and hydrodynamics analyses are evaluated. The hydrodynamics properties are discussed in terms of the hybrid platform response as compared to the original platform. The hybrid platform was modeled using GeniE and the hydrostatic stability and hydrodynamics of the system was evaluated by HydroD, tools developed and marketed by DNV. The results of this study demonstrate the potential benefits of integrating OWCs within a FWT system in terms of reducing the platform oscillatory motion. \u0000 ","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"60 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114090870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear WEC modeling using Sparse Identification of Nonlinear Dynamics (SINDy) 基于非线性动力学(SINDy)稀疏辨识的非线性WEC建模
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-383
Brittany Lydon, Brian Polagye, Steven Brunton
{"title":"Nonlinear WEC modeling using Sparse Identification of Nonlinear Dynamics (SINDy)","authors":"Brittany Lydon, Brian Polagye, Steven Brunton","doi":"10.36688/ewtec-2023-383","DOIUrl":"https://doi.org/10.36688/ewtec-2023-383","url":null,"abstract":"Modeling oscillating surge wave energy converter (OSWEC) systems to accurately predict their behavior has been a notoriously difficult challenge for the wave energy field. This is particularly challenging in realistic sea states where nonlinear WEC dynamics are common due to complex fluid-structure interaction, breaking waves, and other phenomena. Common modeling techniques for OSWECs include using potential flow theory to linearize the governing equations and ease computations, or using CFD to solve the full Navier-Stokes equations coupled with rigid body motion. However, both of these options have significant limitations. Potential flow theory breaks down in realistic sea conditions where nonlinear WEC dynamics are present, and CFD is often too computationally expensive for many applications such as real-time state prediction and optimal control, two areas of active research in the wave energy field. In particular, OSWEC dynamics are dominated by diffractive and viscous forces, often making common assumptions and linearization approximations (including small-body approximations) unreasonable, and CFD computationally intractable. \u0000To bridge this gap in modeling methods, we propose using Sparse Identification of Nonlinear Dynamics (SINDy) to build nonlinear reduced-order models (ROMs) that describe OSWEC behavior in response to large-amplitude regular waves. SINDy is an equation-free, data-driven algorithm that identifies dominant nonlinear functions present in system state dynamics using a library of nonlinear functions created from time series measurement data. The result is an ordinary differential equation (ODE) in time that can be solved from an initial condition to model and predict time behavior of the states. SINDy is parsimonious, meaning it uses a sparsity-promoting hyperparameter with the goal of only including the minimum number of terms to capture dominant dynamics, resulting in interpretable and generalizable results that are not overfit to the data. Using the discovered ROMs and integrating in time, not only can SINDy provide time series models and future state predictions of OSWEC dynamics, it can also give insights into which variables are critical in describing the underlying dynamics of the state.  \u0000In this study, we use SINDy to describe the nonlinear dynamics of a lab-scale OSWEC in a wave tank subjected to large-amplitude regular waves. We use nonlinear simulation data to generate kinematic, force, and torque data and use it as input to SINDy to identify ODEs that describe the measurement variables in time. We then integrate the ODEs to recreate the time series as well as predict future system behavior. We directly compare the resulting time series to the original data input to assess the accuracy of the SINDy model. We also interpret the dominant terms in the ODEs to gain insight on underlying mechanisms of the observed nonlinearity. \u0000Early results show SINDy is a promising tool for modeling nonlinear OSWEC dynamics. We are","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114911196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave Farms Integration in a 100% renewable isolated small power system -frequency stability and grid compliance analysis. 波浪农场集成100%可再生隔离小电力系统的频率稳定性和电网依从性分析。
Proceedings of the European Wave and Tidal Energy Conference Pub Date : 2023-09-02 DOI: 10.36688/ewtec-2023-215
M. Blanco, G. Navarro, J. Nájera, M. Lafoz, J. Sarasúa, Hilel García, G. Martínez-Lucas, J. Pérez-Díaz, Isabel Villalba
{"title":"Wave Farms Integration in a 100% renewable isolated small power system -frequency stability and grid compliance analysis.","authors":"M. Blanco, G. Navarro, J. Nájera, M. Lafoz, J. Sarasúa, Hilel García, G. Martínez-Lucas, J. Pérez-Díaz, Isabel Villalba","doi":"10.36688/ewtec-2023-215","DOIUrl":"https://doi.org/10.36688/ewtec-2023-215","url":null,"abstract":"In general terms, the variable penetration of RE in power systems has some inherent drawbacks, such as lack of manageability and resource variability [1]. Medium (in the range of minutes) and short term (in the range of seconds) variability has a negative impact on system reliability, causing a deterioration of system frequency quality in both interconnected and, moreover, isolated systems [1-2]. Specifically, the variability of the wave energy resource is medium- and short-term. Therefore, although wave energy could be very suitable to be integrated in islands due to its location, the variable nature of wave energy could negatively impact the stability of the power grid [3]. \u0000The case study of the work focuses on the island of El Hierro (Canary Islands, Spain). It is an isolated electrical system with a very high penetration of renewable energy sources. The generation of the electrical system is composed of a wind farm, a pumped hydroelectric power plant and conventional generation by means of a diesel power plant. \u0000In a previous analysis [4], the integration of energy storage systems based on flywheels was analyzed. Based on this previous analysis, the manuscript studies the influence of the integration of the wave energy park in the electrical system of El Hierro. \u0000On the one hand, a wave farm will be proposed to evaluate the generated power and its associated oscillation [5]. The wave energy resource at different locations along the coast of El Hierro will be taken into account. On the other hand, an aggregated inertial dynamic mode of the electrical power system will be used to evaluate the impact of the generated power on the electrical frequency and the aging/degradation effects of the hydropumping elements. The Spanish Grid Code will be taken into account regarding frequency regulation mechanisms in isolated systems. \u0000The degradation of the hydraulic pumping systems due to additional frequency regulation stresses and electrical frequency deterioration will be calculated and evaluated in relation to the penetration of wave energy into the system, with and without the flywheel energy storage plant. This will allow quantification of certain technical limits to wave energy penetration in isolated systems and to draw conclusions with reference to the size of such a power system. \u0000[1] R. S. Kaneshiro et al. “Hawaii Island (Big Island) Wind Impacts” Proc. of Workshop on Active Power Control from Wind Power, Broomfield, CO, USA, 2013. \u0000[2] H. R. Iswadi et al. “Irish power system primary frequency response metrics during different system non synchronous penetration,” IEEE Eindhoven PowerTech 2015, doi: 10.1109/PTC.2015.7232425. \u0000[3] Isabel Villalba et al. “Wave farms grid code compliance in isolated small power systems,” IET Renewable Power Generation, 2019, doi: 10.1049/iet-rpg.2018.5351. \u0000[4] Hilel Garcia-Pereira et al. “Comparison and Influence of Flywheels Energy Storage System Control Schemes in the Frequency Regulation of Isolated Power Syst","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114659816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信