{"title":"The Investigation of EM Scattering from the Time-Varying Overturning Wave Crest Model by the IEM","authors":"Xiao Meng, Li-xin Guo, Tianqi Fan","doi":"10.1155/2016/3274147","DOIUrl":"https://doi.org/10.1155/2016/3274147","url":null,"abstract":"Investigation of the electromagnetic (EM) scattering of time-varying overturning wave crests is a worthwhile endeavor. Overturning wave crest is one of the reasons of sea spike generation, which increases the probability of false radar alarms and reduces the performance of multitarget detection in the environment. A three-dimensional (3D) time-varying overturning wave crest model is presented in this paper; this 3D model is an improvement of the traditional two-dimensional (2D) time-varying overturning wave crest model. The integral equation method (IEM) was employed to investigate backward scattering radar cross sections (RCS) at various incident angles of the 3D overturning wave crest model. The super phenomenon, where the intensity of horizontal polarization scattering is greater than that of vertical polarization scattering, is an important feature of sea spikes. Simulation results demonstrate that super phenomena may occur in some time samples as variations in the overturning wave crest.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"10 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2016-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81905566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymorphs of Tolfenamic Acids: Stability Analysis Using Cluster Method","authors":"L. Ang, M. Mohamed-Ibrahim, S. Sulaiman","doi":"10.1155/2016/3537842","DOIUrl":"https://doi.org/10.1155/2016/3537842","url":null,"abstract":"We report results of the relative stability between form I and form II of tolfenamic acid. By performing systematic cluster calculations at the B3LYP/6-31 level of theory and including the corrections to the dispersion and basis set superposition error, we found that form II is energetically more stable than form I. Furthermore, we found that the formation of dimers has a stabilizing effect compared to individual monomers in the clusters that we have considered.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2016-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72899717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural and Magnetic Properties of Mn Doped BiFeO3 Nanomaterials","authors":"V. Srinivas, A. Raghavender, K. Kumar","doi":"10.1155/2016/4835328","DOIUrl":"https://doi.org/10.1155/2016/4835328","url":null,"abstract":"Nanocrystalline materials were synthesized using sol-gel technique. The structural and magnetic properties were investigated in detail. Rietveld analysis from XRD revealed the structural formation of BiFeO3. As the Mn doping concentration was increased, the structure of BiFeO3 changed from rhombohedral to tetragonal. All the M-H loops showed the ferromagnetic behavior in the prepared samples. Magnetization was observed to enhance as the Mn doping concentration was increased. The enhanced magnetization may be due to the collapse of the space modulated spin structure as observed from the structural changes.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"86 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80726216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Dielectric Properties and Ultrasonic Attenuation in KDP-Type Ferroelectrics","authors":"V. S. Bist, N. S. Panwar","doi":"10.1155/2016/9475740","DOIUrl":"https://doi.org/10.1155/2016/9475740","url":null,"abstract":"The soft mode dynamical model has been used to study dielectric properties and ultrasonic attenuation in KDP-type ferroelectric crystals. The model Hamiltonian proposed by Blinc and Zeks has been modified by considering lattice anharmonicity up to fourth-order. The correlations appearing in the dynamical equation have been evaluated using double-time thermal retarded Green’s functions method and Dyson’s equation. Without any decoupling, the higher order correlations, appearing in the dynamical equation, have been evaluated using the renormalized Hamiltonian. The expressions for collective frequencies, width, dielectric constant, ultrasonic attenuation, and tangent loss have been calculated. The dielectric properties and ultrasonic attenuation strongly depend on the relaxational mode behavior of stochastic motion of H2PO4 group in KDP-type ferroelectrics. By fitting model values of physical quantities, the temperature dependence of and for different value of four-body coupling coefficient and dielectric constant and loss tangent has been calculated. The calculated and observed results have been found in good agreement.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"62 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81116805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibration Analysis of Euler-Bernoulli Beams Partially Immersed in a Viscous Fluid","authors":"W. Abassi, A. E. Baroudi, F. Razafimahery","doi":"10.1155/2016/6761372","DOIUrl":"https://doi.org/10.1155/2016/6761372","url":null,"abstract":"The vibrational characteristics of a microbeam are well known to strongly depend on the fluid in which the beam is immersed. In this paper, we present a detailed theoretical study of the modal analysis of microbeams partially immersed in a viscous fluid. A fixed-free microbeam vibrating in a viscous fluid is modeled using the Euler-Bernoulli equation for the beams. The unsteady Stokes equations are solved using a Helmholtz decomposition technique in a two-dimensional plane containing the microbeams cross sections. The symbolic software Mathematica is used in order to find the coupled vibration frequencies of beams with two portions. The frequency equation is deduced and analytically solved. The finite element method using Comsol Multiphysics software results is compared with present method for validation and an acceptable match between them was obtained. In the eigenanalysis, the frequency equation is generated by satisfying all boundary conditions. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"11 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79505688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Sirota, V. Selemenev, M. Kovaleva, I. Pavlenko, K. Mamunin, V. Dokalov, M. Prozorova
{"title":"Synthesis of Magnesium Oxide Nanopowder by Thermal Plasma Using Magnesium Nitrate Hexahydrate","authors":"V. Sirota, V. Selemenev, M. Kovaleva, I. Pavlenko, K. Mamunin, V. Dokalov, M. Prozorova","doi":"10.1155/2016/6853405","DOIUrl":"https://doi.org/10.1155/2016/6853405","url":null,"abstract":"Magnesium oxide (MgO) nanopowder was synthesized by thermal plasma in a novel thermal DC plasma torch using magnesium nitrate hexahydrate. Magnesium nitrate hexahydrate (Mg(NO3)2·6H2O) was obtained from serpentinite (Mg3Si2O5(OH)4; lizardite) (Halilovskiy array, Orenburg region, Russia). The synthesized samples were characterized by analytical techniques including X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM characterization studies confirmed that MgO nanopowder obtained has periclase structure with high purity, and the particle sizes vary within the range of 100 nm to 150 nm. We believe that the present work will promote further experimental studies on the physical properties and the applications of MgO nanopowders in the fields such as high-densed ceramics, additives in bactericide, and refractory products.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"45 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2016-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82216100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytic Comparison of MHD Squeezing Flow in Porous Medium with Slip Condition","authors":"I. Ullah, M. T. Rahim, H. Khan, Mubashir Qayyum","doi":"10.1155/2016/5407916","DOIUrl":"https://doi.org/10.1155/2016/5407916","url":null,"abstract":"The aim of this paper is to compare the efficiency of various techniques for squeezing flow of an incompressible viscous fluid in a porous medium under the influence of a uniform magnetic field squeezed between two large parallel plates having slip boundary. Fourth-order nonlinear ordinary differential equation is obtained by transforming the Navier-Stokes equations. Resulting boundary value problem is solved using Differential Transform Method (DTM), Daftardar Jafari Method (DJM), Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), and Optimal Homotopy Asymptotic Method (OHAM). The problem is also solved numerically using Mathematica solver NDSolve. The residuals of the problem are used to compare and analyze the efficiency and consistency of the abovementioned schemes.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"98 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76334026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on Structural and Optical Properties of Hydrothermally Synthesized Zn2SnO4 Nanoparticles","authors":"L. Joseph, J. Jeronsia, M. M. Jaculine, S. Das","doi":"10.1155/2016/1801795","DOIUrl":"https://doi.org/10.1155/2016/1801795","url":null,"abstract":"Ternary oxide Zn2SnO4 has emerged as a promising material due to its tunable work function, band gap energy, and electric resistivity by simply varying the composition of the material. Zinc stannate nanoparticles were synthesized by green hydrothermal growth technique at 200°C for the reaction time of 24 h using stannic chloride pentahydrate (SnCl4·5H2O) and zinc chloride (ZnCl2) as precursors maintained at pH value of 8. X-ray diffraction analysis confirmed the phase purity and high crystalline nature of the synthesized sample. The estimated crystallite size was about 12.3 nm corresponding to the most prominent plane (311) using Scherrer equation. Morphology of the sample was characterized by SEM analysis, which confirmed the presence of small size nanoparticles. The optical property of synthesized sample was studied by using UV-visible and PL spectroscopy analysis. The derived optical band gap of 3.94 eV was found to be blue shifted as compared to bulk Zn2SnO4 (3.6 eV), which should be attributed to the quantum size effects. Room temperature photoluminescence spectrum showed emission bands at 397 nm and 468 nm.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2016-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88283956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Analysis on Time Behavior of a Lengthening Pendulum","authors":"J. Choi, J. Song","doi":"10.1155/2016/1696105","DOIUrl":"https://doi.org/10.1155/2016/1696105","url":null,"abstract":"Quantum properties of a lengthening pendulum are studied under the assumption that the length of the string increases at a steady rate. Advanced analysis for various physical problems in several types of quantum states, such as propagators, Wigner distribution functions, energy eigenvalues, probability densities, and dispersions of physical quantities, is carried out using quantum wave functions of the system. In particular, the time behavior of Gaussian-type wave packets is investigated in detail. The probability density for a Gaussian wave packet displaced in the positive at oscillates back and forth from the center (). This phenomenon is very similar to the classical motion of the pendulum. As a consequence, we can confirm that there is a correspondence between its quantum and classical behaviors. When we analyze a dynamical system in view of quantum mechanics, the quantum and classical correspondence is very important in order for the associated quantum theory to be valid and viable.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"29 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2016-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89380853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Observational Constraints of 30–40 GeV Dark Matter Annihilation in Galaxy Clusters","authors":"M. Chan","doi":"10.1155/2016/2394965","DOIUrl":"https://doi.org/10.1155/2016/2394965","url":null,"abstract":"Recently, it has been shown that the annihilation of 30–40 GeV dark matter particles through channel can satisfactorily explain the excess GeV gamma-ray spectrum near the Galactic Center. In this paper, we apply the above model to galaxy clusters and use the latest upper limits of gamma-ray flux derived from Fermi-LAT data to obtain an upper bound of the annihilation cross section of dark matter. By considering the extended density profiles and the cosmic ray profile models of 49 galaxy clusters, the upper bound of the annihilation cross section can be further tightened to cm3 s−1. This result is consistent with the one obtained from the data near the Galactic Center.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"122 5 1","pages":"2394965"},"PeriodicalIF":0.0,"publicationDate":"2016-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80207319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}