Plants最新文献

筛选
英文 中文
Design and Characterization of Liposomal-Based Carriers for the Encapsulation of Rosa canina Fruit Extract: In Vitro Gastrointestinal Release Behavior 用于包裹蔷薇果提取物的脂质体载体的设计与表征:体外胃肠道释放行为
Plants Pub Date : 2024-09-18 DOI: 10.3390/plants13182608
Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Mina Volić, Darko Micić, Jelena Živković, Katarina P. Šavikin
{"title":"Design and Characterization of Liposomal-Based Carriers for the Encapsulation of Rosa canina Fruit Extract: In Vitro Gastrointestinal Release Behavior","authors":"Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Mina Volić, Darko Micić, Jelena Živković, Katarina P. Šavikin","doi":"10.3390/plants13182608","DOIUrl":"https://doi.org/10.3390/plants13182608","url":null,"abstract":"The increasing demand for natural compounds as an alternative to synthetic antioxidants and conservans has led to the utilization of secondary plant metabolites in the food industry, as these bioactive compounds possess great antioxidative and antimicrobial properties without side effects on human health. Despite this, the sensitivity of plant-derived compounds is a restrictive factor in terms of their full potential. The current research aimed to characterize rosehip-fruit-extract-loaded liposomes (non-treated and UV-irradiated) in terms of their density, surface tension, viscosity, chemical composition (FTIR and HPLC analyses), and thermal behavior. In the storage stability study, the vesicle size, polydispersity index (PDI), zeta potential, conductivity, and mobility of the liposomes were monitored. FTIR analysis confirmed that the plant compounds were successfully loaded within the carrier, while no chemical reaction between the rosehip fruit extract and phospholipids was detected. The results of the HPLC analysis evidence the high potential for liposomal encapsulation to protect sensitive bioactives in the rosehip fruit extract from the degrading effect of UV irradiation. The size of the rosehip-fruit-extract-encapsulated liposomes increased on the seventh day of storage from 250 nm to 300 nm, while the zeta potential values were between −21 mV and −30 mV in the same period and further stabilized over 60 days of monitoring. In Vitro release studies in water and simulated gastrointestinal fluids showed that the presence of enzymes and bile salts (in intestinal fluid) enhanced the rosehip–polyphenol permeability from liposomes (70.3% after 6 h) compared with their release in water after 24 h and in gastric fluid after 4 h (38.9% and 41.4%, respectively). The obtained results indicate that the proliposome method was an effective method for rosehip fruit extract liposomal encapsulation and for the delivery of these plant-derived bioactives in foods.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photosynthesis, Chlorophyll Fluorescence, and Hormone Regulation in Tomato Exposed to Mechanical Wounding 机械伤下番茄的光合作用、叶绿素荧光和激素调节
Plants Pub Date : 2024-09-17 DOI: 10.3390/plants13182594
Hui Yan, Kai Fu, Jiajia Li, Mingyong Li, Shaofan Li, Zhiguang Dai, Xin Jin
{"title":"Photosynthesis, Chlorophyll Fluorescence, and Hormone Regulation in Tomato Exposed to Mechanical Wounding","authors":"Hui Yan, Kai Fu, Jiajia Li, Mingyong Li, Shaofan Li, Zhiguang Dai, Xin Jin","doi":"10.3390/plants13182594","DOIUrl":"https://doi.org/10.3390/plants13182594","url":null,"abstract":"To understand the physiological responses of seedlings to mechanical wounding, we analyzed photosynthesis, chlorophyll fluorescence, and endogenous hormones in tomato (Solanum lycopersicum L.) subjected to varying levels of mechanical pressure. The results showed that, at 4 h after wounding, excess excitation energy was dissipated as thermal energy through the reduction in the photosystem II (PSII) opening degree and the increase in non-photochemical quenching. Photodamage was avoided, and stomatal closure was the most prominent factor in photosynthesis inhibition. However, 12 h after wounding, the photoprotective mechanism was insufficient to mitigate the excess excitation energy caused by the wound, leading to photochemical damage to physiological processes. Meanwhile, the non-stomatal factor became the most prominent limiting factor for photosynthesis at 80 N pressure. At 12 and 36 h after wounding, the concentrations of abscisic acid (ABA), methyl jasmonate (MeJA), indole-3-acetic acid (IAA), zeatin riboside (ZR), and gibberellic acid (GA3) in the stems showed a trend towards being increased, which promoted wound healing. However, after mechanical wounding, the ratio of stress- to growth-promoting hormones first increased and then decreased. This pattern can enhance stress resistance and promote cell division, respectively. Comprehensive analysis showed that the fluorescence parameter, photochemical quenching coefficient (Qp_Lss), was the most suitable indicator for evaluating mechanical wounding conditions.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Plantlet Regeneration from Branches in Mangifera indica L. 从 Mangifera indica L. 的分枝中高效再生小植株
Plants Pub Date : 2024-09-17 DOI: 10.3390/plants13182595
Huijing Zhou, Jinglang Sun, Keyuan Zheng, Xinyuan Zhang, Yuan Yao, Mulan Zhu
{"title":"Efficient Plantlet Regeneration from Branches in Mangifera indica L.","authors":"Huijing Zhou, Jinglang Sun, Keyuan Zheng, Xinyuan Zhang, Yuan Yao, Mulan Zhu","doi":"10.3390/plants13182595","DOIUrl":"https://doi.org/10.3390/plants13182595","url":null,"abstract":"Mango (Mangifera indica L.) is one of the most significant tropical and subtropical fruit species, with high ecological and economic value. However, research on the in vitro culture of mangoes is relatively weak, so establishing an efficient and stable mango plant regeneration system is of great significance. In this study, a preliminary mango regeneration system was established with Mangifera indica L. cv. Keitt from young branches as the starting explants. The results showed that the optimal plant growth regulator (PGR) formula for direct adventitious shoot induction on the branches was 1 mg/L 6-benzylaminopurine (6-BA) + 0.1 mg/L a-naphthaleneacetic acid (NAA), with an adventitious shoot induction rate of 73.63% and an average of 6.76 adventitious shoots. The optimal basal medium for adventitious shoot induction was wood plant medium (WPM), with an adventitious shoot induction rate of 63.87% and an average of 5.21 adventitious shoots. The optimal culture medium for adventitious shoot elongation was WPM + 1 mg/L 6-BA + 0.5 mg/L NAA, with an adventitious shoot elongation rate of 89.33% and an average length of 5.17 cm. The optimal formula for the induction of mango rooting was Douglas fir cotyledon revised medium (DCR) + 3 mg/L indole-3-butyric acid (IBA), with a maximum rooting rate of 66.13% and an average rooting quantity of 6.43. The genetic fidelity of the in vitro-regenerated plants was evaluated using inter-simple sequence repeat (ISSR) molecular markers. There was no difference between the in vitro-regenerated plants and the parent plant. This study provides an efficient and stable propagation system for Mangifera indica L., laying the foundation for its rapid propagation and genetic improvement.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Coleoptile Length of Rice Seeds under Submergence through NAL11 Knockout 通过 NAL11 基因敲除提高浸水条件下水稻种子的茎秆长度
Plants Pub Date : 2024-09-17 DOI: 10.3390/plants13182593
Zhe Zhao, Yuelan Xie, Mengqing Tian, Jinzhao Liu, Chun Chen, Jiyong Zhou, Tao Guo, Wuming Xiao
{"title":"Enhancing Coleoptile Length of Rice Seeds under Submergence through NAL11 Knockout","authors":"Zhe Zhao, Yuelan Xie, Mengqing Tian, Jinzhao Liu, Chun Chen, Jiyong Zhou, Tao Guo, Wuming Xiao","doi":"10.3390/plants13182593","DOIUrl":"https://doi.org/10.3390/plants13182593","url":null,"abstract":"Submergence stress challenges direct seeding in rice cultivation. In this study, we identified a heat shock protein, NAL11, with a DnaJ domain, which can regulate the length of rice coleoptiles under flooded conditions. Through bioinformatics analyses, we identified cis-regulatory elements in its promoter, making it responsive to abiotic stresses, such as hypoxia or anoxia. Expression of NAL11 was higher in the basal regions of shoots and coleoptiles during flooding. NAL11 knockout triggered the rapid accumulation of abscisic acid (ABA) and reduction of Gibberellin (GA), stimulating rice coleoptile elongation and contributes to flooding stress management. In addition, NAL11 mutants were found to be more sensitive to ABA treatments. Such knockout lines exhibited enhanced cell elongation for coleoptile extension. Quantitative RT-PCR analysis revealed that NAL11 mediated the gluconeogenic pathway, essential for the energy needed in cell expansion. Furthermore, NAL11 mutants reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde under submerged stress, attributed to an improved antioxidant enzyme system compared to the wild-type. In conclusion, our findings underscore the pivotal role of NAL11 knockout in enhancing the tolerance of rice to submergence stress by elucidating its mechanisms. This insight offers a new strategy for improving resilience against flooding in rice cultivation.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence of Yam Mosaic Virus and Yam Mild Mosaic Virus on Dioscorea spp. Germplasm Collection in Cuba—Epidemiology of Associated Diseases 山药花叶病毒和山药轻度花叶病毒在古巴薯蓣属种质上的出现-相关疾病的流行病学
Plants Pub Date : 2024-09-17 DOI: 10.3390/plants13182597
José Efraín González Ramírez, Dariel Cabrera Mederos, Vaniert Ventura Chávez, Rosa Elena González Vázquez, Katia Ojito-Ramos, Liset García Romero, Luis Fabián Salazar-Garcés, Diana Catalina Velastegui-Hernández, Elena Vicenta Hernández Navarro, Michel Leiva-Mora, Fabián Giolitti, Orelvis Portal
{"title":"Occurrence of Yam Mosaic Virus and Yam Mild Mosaic Virus on Dioscorea spp. Germplasm Collection in Cuba—Epidemiology of Associated Diseases","authors":"José Efraín González Ramírez, Dariel Cabrera Mederos, Vaniert Ventura Chávez, Rosa Elena González Vázquez, Katia Ojito-Ramos, Liset García Romero, Luis Fabián Salazar-Garcés, Diana Catalina Velastegui-Hernández, Elena Vicenta Hernández Navarro, Michel Leiva-Mora, Fabián Giolitti, Orelvis Portal","doi":"10.3390/plants13182597","DOIUrl":"https://doi.org/10.3390/plants13182597","url":null,"abstract":"Potyvirus diseases are one of the main challenges facing the production of yam (Dioscorea spp.). The objective of this study was to identify the potyviruses present in the Dioscorea spp. germplasm collection at Instituto de Investigaciones de Viandas Tropicales (INIVIT) to establish methodologies for the characterization of the associated diseases. For this purpose, immunochemical and molecular methods were used to identify the potyviruses present. The symptomatology of Dioscorea spp. at INIVIT’s germplasm collection was described. In addition, the severity and incidence in the germplasm collection and production areas were evaluated. As a result, the first report of yam mosaic virus (Potyvirus yamtesselati) and yam mild mosaic virus (Potyvirus yamplacidum) in Cuba is presented. The existence of resistant, tolerant, and susceptible cultivars to potyvirus-associated diseases in the germplasm collection was detected, and the incidence of these diseases was higher than 64% in the production areas evaluated. This study represents a step forward in the establishment of certification programs for propagating material of Dioscorea spp. in Cuba.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical Characterization and Disease Control Efficacy of Pleurotus eryngii-Derived Chitosan—An In Vivo Study against Monilinia laxa, the Causal Agent of Plum Brown Rot Pleurotus eryngi-Derived Chitosan 的生化特性和病害控制功效--针对李褐腐病病原菌莫尼林亚门的活体研究
Plants Pub Date : 2024-09-17 DOI: 10.3390/plants13182598
Ippolito Camele, Amira A. Mohamed, Amira A. Ibrahim, Hazem S. Elshafie
{"title":"Biochemical Characterization and Disease Control Efficacy of Pleurotus eryngii-Derived Chitosan—An In Vivo Study against Monilinia laxa, the Causal Agent of Plum Brown Rot","authors":"Ippolito Camele, Amira A. Mohamed, Amira A. Ibrahim, Hazem S. Elshafie","doi":"10.3390/plants13182598","DOIUrl":"https://doi.org/10.3390/plants13182598","url":null,"abstract":"Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused on pharmaceutical uses, however their uses for plant disease control remain less explored. The main objective of the current study is to evaluate the possibility of using chitosan obtained from mushroom Pleurotus eryngii (Cs-Pe) for controlling some phytopathogens compared to commercial chitosan (C.Cs). This study is focused on the following key areas: (i) extracting Ct from P. eryngii mycelium and converting it to Cs through deacetylation, using both bleaching and non-bleaching methods; (ii) conducting a physico-chemical characterization and in vitro evaluation of the antimicrobial activity of the obtained Cs; (iii) performing an in vivo assessment of the phytotoxic and cytotoxic effects of Cs; and (iv) investigating in vivo the impact of the studied chitosan on fruit quality and its biocontrol efficacy against Monilinia laxa infections in plum fruits. Results showed that Cs-Pe, especially the unbleached one, displayed promising in vitro antimicrobial activity against the majority of tested pathogens. Regarding the cytotoxicity, the highest significant increase in cell abnormality percentage was observed in the case of C.Cs compared to Cs-Pe. In the in vivo study, Cs-Pe acted as a protective barrier, lowering and/or preventing moisture loss and firmness of treated plums. The studied Cs-Pe demonstrated notable efficacy against M. laxa which decreased the fruits’ percentage decline. These results strongly suggest that Cs derived from P. eryngii is a potential candidate for increasing plums’ shelf-life. This research shed light on the promising applications of P. eryngii-derived Cs in the agri-food field.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internal Disorders of Mango Fruit and Their Management—Physiology, Biochemistry, and Role of Mineral Nutrients 芒果果实的内部失调及其处理--生理学、生物化学和矿物质营养的作用
Plants Pub Date : 2024-09-17 DOI: 10.3390/plants13182596
Muhammad Asad Ullah, Amit Khanal, Priya Joyce, Neil White, Andrew Macnish, Daryl Joyce
{"title":"Internal Disorders of Mango Fruit and Their Management—Physiology, Biochemistry, and Role of Mineral Nutrients","authors":"Muhammad Asad Ullah, Amit Khanal, Priya Joyce, Neil White, Andrew Macnish, Daryl Joyce","doi":"10.3390/plants13182596","DOIUrl":"https://doi.org/10.3390/plants13182596","url":null,"abstract":"Mango (Mangifera indica L.) is a popular fruit grown in tropical and subtropical regions. Mango has a distinctive aroma, flavour, and nutritional properties. Annual global mango production is >50 million tonnes. Major producers of mango include India, Bangladesh, China, Mexico, Pakistan, Indonesia, Brazil, Thailand, and the Philippines, and it is shipped worldwide. Harvested mango fruit are highly perishable, with a short shelf life. Physiological disorders are among the major factors limiting their postharvest quality and shelf life, including when fruit need phytosanitary treatments, such as hot water treatment, vapour heat treatment, and irradiation. This review focuses on problematic physiological disorders of mango flesh, including physiology and biochemistry. It considers factors contributing to the development and/or exacerbation of internal disorders. Improved production practices, including pruning, nutrient application, and irrigation, along with monitoring and managing environmental conditions (viz., temperature, humidity, and vapour pressure deficit), can potentially maintain fruit robustness to better tolerate otherwise stressful postharvest operations. As demand for mangoes on international markets is compromised by internal quality, robust fruit is crucial to maintaining existing and gaining new domestic and export consumer markets. Considering mango quality, a dynamic system, a more holistic approach encompassing pre-, at-, and post-harvest conditions as a continuum is needed to determine fruit predisposition and subsequent management of internal disorders.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Metabolites and Transcriptome Analysis Uncover the Putative Role of Auxin in Floral Sex Determination in Litchi chinensis Sonn. 靶向代谢物和转录组分析揭示了 Auxin 在荔枝花性别决定中的推定作用
Plants Pub Date : 2024-09-16 DOI: 10.3390/plants13182592
Zhe Chen, Tingting Yan, Farhat Abbas, Mingchao Yang, Xianghe Wang, Hao Deng, Hongna Zhang, Fuchu Hu
{"title":"Targeted Metabolites and Transcriptome Analysis Uncover the Putative Role of Auxin in Floral Sex Determination in Litchi chinensis Sonn.","authors":"Zhe Chen, Tingting Yan, Farhat Abbas, Mingchao Yang, Xianghe Wang, Hao Deng, Hongna Zhang, Fuchu Hu","doi":"10.3390/plants13182592","DOIUrl":"https://doi.org/10.3390/plants13182592","url":null,"abstract":"Litchi exhibits a large number of flowers, many flowering batches, and an inconsistent ratio of male and female flowers, frequently leading to a low fruit-setting rate. Floral sexual differentiation is a crucial phase in perennial trees to ensure optimal fruit production. However, the mechanism behind floral differentiation remains unclear. The objective of the study was to identify the role of auxin in floral differentiation at the transcriptional level. The results showed that the ratio of female flowers treated with naphthalene acetic acid (NAA) was significantly lower than that of the control stage (M0/F0). The levels of endogenous auxin and auxin metabolites were measured in male and female flowers at different stages of development. It was found that the levels of IAA, IAA-Glu, IAA-Asp, and IAA-Ala were significantly higher in male flowers compared to female flowers. Next-generation sequencing and modeling were employed to perform an in-depth transcriptome analysis on all flower buds in litchi ‘Feizixiao’ cultivars (Litchi chinensis Sonn.). Plant hormones were found to exert a significant impact on the litchi flowering process and flower proliferation. Specifically, a majority of differentially expressed genes (DEGs) related to the auxin pathway were noticeably increased during male flower bud differentiation. The current findings will enhance our comprehension of the process and control mechanism of litchi floral sexual differentiation. It also offers a theoretical foundation for implementing strategies to regulate flowering and enhance fruit production in litchi cultivation.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the Mechanism of Melatonin-Induced Enhancement of Photosystem II Function in Moderate Drought-Stressed Oregano Plants 破解褪黑激素诱导中度干旱胁迫牛至植物光系统 II 功能增强的机制
Plants Pub Date : 2024-09-16 DOI: 10.3390/plants13182590
Julietta Moustaka, Ilektra Sperdouli, Sumrunaz İşgören, Begüm Şaş, Michael Moustakas
{"title":"Deciphering the Mechanism of Melatonin-Induced Enhancement of Photosystem II Function in Moderate Drought-Stressed Oregano Plants","authors":"Julietta Moustaka, Ilektra Sperdouli, Sumrunaz İşgören, Begüm Şaş, Michael Moustakas","doi":"10.3390/plants13182590","DOIUrl":"https://doi.org/10.3390/plants13182590","url":null,"abstract":"Melatonin (MT) is considered as an antistress molecule that plays a constructive role in the acclimation of plants to both biotic and abiotic stress conditions. In the present study, we assessed the impact of 10 and 100 μM MT foliar spray, on chlorophyll content, and photosystem II (PSII) function, under moderate drought stress, on oregano (Origanum vulgare L.) plants. Our aim was to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process. Foliar spray with 100 μM MT was more effective in mitigating the negative impact of moderate drought stress on PSII function, compared to 10 μM MT. MT foliar spray significantly improved the reduced efficiency of the oxygen-evolving complex (OEC), and PSII photoinhibition (Fv/Fm), which were caused by drought stress. Under moderate drought stress, foliar spray with 100 μM MT, compared with the water sprayed (WA) leaves, increased the non-photochemical quenching (NPQ) by 31%, at the growth irradiance (GI, 205 μmol photons m−2 s−1), and by 13% at a high irradiance (HI, 1000 μmol photons m−2 s−1). However, the lower NPQ increase at HI was demonstrated to be more effective in decreasing the singlet-excited oxygen (1O2) production at HI (−38%), in drought-stressed oregano plants sprayed with 100 μM MT, than the corresponding decrease in 1O2 production at the GI (−20%), both compared with the respective WA-sprayed leaves under moderate drought. The reduced 1O2 production resulted in a significant increase in the quantum yield of PSII photochemistry (ΦPSII), and the electron transport rate (ETR), in moderate drought-stressed plants sprayed with 100 μM MT, compared with WA-sprayed plants, but only at the HI (+27%). Our results suggest that the enhancement of PSII functionality, with 100 μM MT under moderate drought stress, was initiated by the NPQ mechanism, which decreased the 1O2 production and increased the fraction of open PSII reaction centers (qp), resulting in an increased ETR.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Mitogen-Activated Protein Kinase Pathway is Required for Bacillus amyloliquefaciens PMB05 to Enhance Disease Resistance to Bacterial Soft Rot in Arabidopsis thaliana 淀粉样芽孢杆菌 PMB05 增强拟南芥对细菌软腐病的抗病性需要一种丝裂原活化蛋白激酶途径
Plants Pub Date : 2024-09-16 DOI: 10.3390/plants13182591
Ai-Ting Li, Shang-Kai Liu, Jia-Rong Li, Sabrina Diana Blanco, Hsin-Wei Tsai, Jia-Xin Xie, Yun-Chen Tsai, Yuh Tzean, Yi-Hsien Lin
{"title":"A Mitogen-Activated Protein Kinase Pathway is Required for Bacillus amyloliquefaciens PMB05 to Enhance Disease Resistance to Bacterial Soft Rot in Arabidopsis thaliana","authors":"Ai-Ting Li, Shang-Kai Liu, Jia-Rong Li, Sabrina Diana Blanco, Hsin-Wei Tsai, Jia-Xin Xie, Yun-Chen Tsai, Yuh Tzean, Yi-Hsien Lin","doi":"10.3390/plants13182591","DOIUrl":"https://doi.org/10.3390/plants13182591","url":null,"abstract":"When a plant is infected by a pathogen, endogenous immune responses are initiated. When the initiation of these defense responses is induced by a pathogen-associated molecular pattern (PAMP) of a pathogen, it is called PAMP-triggered immunity (PTI). Previous studies have shown that Bacillus amyloliquefaciens PMB05 can enhance PTI signals and improve disease control of bacterial soft rot and wilt in Arabidopsis thaliana. In the context of controlling bacterial wilt disease, the involvement of a mitogen-activated protein kinase (MAPK) signaling pathway has been established. Nevertheless, it remains unclear whether this pathway is also required for B. amyloliquefaciens PMB05 in controlling bacterial soft rot. In this study, A. thaliana ecotype Columbia (Col-0) and its mutants on a MAPK pathway-related pathway were used as a model and established that the ability of B. amyloliquefaciens PMB05 to control soft rot requires the participation of the MAPK pathway. Moreover, the enhancement of disease resistance by PMB05 is highly correlated with the activation of reactive oxygen species generation and stomata closure, rather than callose deposition. The spray inoculation method was used to illustrate that PMB05 can enhance stomatal closure, thereby restricting invasion by the soft rot bacterium. This control mechanism has also been demonstrated to require the activation of the MAPK pathway. This study demonstrates that B. amyloliquefaciens PMB05 can accelerate stomata closure via the activation of the MAPK pathway during PTI, thereby reducing pathogen invasion and achieving disease resistance against bacterial soft rot.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信