Planetary and Space Science最新文献

筛选
英文 中文
A discussion on estimating small bodies taxonomies using phase curves results 关于利用相位曲线结果估算小天体分类的讨论
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-17 DOI: 10.1016/j.pss.2024.105970
Alvaro Alvarez-Candal
{"title":"A discussion on estimating small bodies taxonomies using phase curves results","authors":"Alvaro Alvarez-Candal","doi":"10.1016/j.pss.2024.105970","DOIUrl":"10.1016/j.pss.2024.105970","url":null,"abstract":"<div><p>Upcoming large multiwavelength photometric surveys will provide a leap in our understanding of small body populations, among other fields of modern astrophysics. Serendipitous observations of small bodies in different orbital locations allow us to study diverse phenomena related to how their surfaces scatter solar light.</p><p>In particular, multiple observations of the same object in different epochs permit us to construct their phase curves to obtain absolute magnitudes and phase coefficients. In this work, we tackle a series of long-used relationships associating these phase coefficients with the taxa of small bodies and suggest that some may need to be revised in the light of large-number statistics.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105970"},"PeriodicalIF":1.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal extraction of water ice from the lunar surface II - vapor yields for an improved regolith model 月球表面水冰的热提取 II--改进的沉积岩模型的水汽产量
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-16 DOI: 10.1016/j.pss.2024.105973
Connor Westcott, Julie Brisset
{"title":"Thermal extraction of water ice from the lunar surface II - vapor yields for an improved regolith model","authors":"Connor Westcott,&nbsp;Julie Brisset","doi":"10.1016/j.pss.2024.105973","DOIUrl":"10.1016/j.pss.2024.105973","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This work focuses on thermal water extraction on the lunar surface. We previously developed a three-dimensional finite element model (FEM) implementing heat and gas diffusion in the porous granular medium that is icy lunar regolith. Here, we present an improved version of this work in which we implemented a more realistic regolith model. In particular, we addressed previous model simplifications on regolith emissivity and porosity, water sublimation rate, as well as regolith and water ice thermal conductivity and permeability. Incorporating recent modeling and experimental work from the literature, we investigated the effect of these soil properties on the outcome of our simulations, with a particular interest in the yield of the thermal extraction process. Aiming at understanding what thermal water extraction would produce if heating the lunar surface directly, we also studied the effect of open borders on extraction yields.&lt;/div&gt;&lt;div&gt;We find that the crude icy regolith approximation we implemented in Paper I provided a lower estimation of water vapor yields upon heating. Overall and using the same heating methods (surface heating as well as inserted drills), our more accurate regolith model implementation extracted more water from the simulation volume. With this new model, we observed that extraction yields depended mostly on the ice content of the regolith, and to a lesser extent on the heating configuration (number of drills) and power. In two specific configurations, 16 and 25 drills at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; W in 1%vol icy regolith, heating allowed the extraction of nearby ice, efficiently desiccating the entire simulation volume. Apart from these two cases, the highest extraction yields were obtained for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; W surface heating of a volume with closed borders with values over 80%. In open border volumes, highest yields were around 70% achieved for the highest number of drills (16 and 25), at the highest power (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; W) in the regolith with the largest icy fraction. Extraction masses started being noticeable around a few minutes, but reaching most of the maximum possible yields took up to several days in some cases.&lt;/div&gt;&lt;div&gt;Defining an extraction efficiency by combining the yield and extraction times, we found that the best compromise between hardware complexity, time, and yield would be working in open border environments, using dense drill configurations in ice-rich regolith, and loose drill configurations in ice-poor regolith. In both cases, extraction efficiencies were similar at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; W and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"252 ","pages":"Article 105973"},"PeriodicalIF":1.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isotopic fractionation of methane on Mars via diffusive separation in the subsurface 通过地表下的扩散分离实现火星上甲烷的同位素分馏
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-13 DOI: 10.1016/j.pss.2024.105971
John E. Moores, Haley M. Sapers
{"title":"Isotopic fractionation of methane on Mars via diffusive separation in the subsurface","authors":"John E. Moores,&nbsp;Haley M. Sapers","doi":"10.1016/j.pss.2024.105971","DOIUrl":"10.1016/j.pss.2024.105971","url":null,"abstract":"<div><p>Many processes have been identified in the Martian subsurface which may produce or release methane that eventually can be emitted into the atmosphere. Given the wide range of isotopic values for source carbon reported on Mars and the importance of atmospheric methane isotopologues as a tracer for subsurface processes, it is critical to quantify the level of isotopic fractionation that can occur during subsurface transport. On Earth, isotopic fractionation occurs when methane transport is dominated by Knudsen diffusion through small pores. However, unlike the Earth, on Mars the low atmospheric pressure and commensurate longer mean free path suggest that most subsurface transport of methane occurs in the Knudsen regime, amplifying this effect. Here, we report on simulations of diffusion through the martian subsurface and report on the level of fractionation that would be expected under two end-member scenarios. For Interplanetary Dust Particles (IDPs) incorporated in near-surface sediments in which methane is released quickly upon generation, atmospheric emissions of methane are expected to be representative of the reservoir isotopic ratio. However, for deeper sources in which methane accumulates as trapped gas, subsurface transport will result in depletions of <sup>13</sup>CH<sub>4</sub> compared to reservoir concentrations by approximately −31‰. Over time, both the reservoir and the emitted gas will evolve to become isotopically enriched in <sup>13</sup>CH<sub>4</sub> compared to a standard of constant isotopic ratio. This necessitates temporal measurements of emitted methane to understand the <strong><em>δ</em></strong><sup>13</sup>C of the reservoir and depth of the release, preferably with hourly or better frequency. Finally, a seasonal cycle in <strong><em>δ</em></strong><sup>13</sup>C with an amplitude of 5.3‰ is expected with adsorption acting to create small temporary reservoirs that are filled and emptied over the year by the subsurface thermal wave. This effect may provide a way to probe near-surface thermophysical properties.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105971"},"PeriodicalIF":1.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324001351/pdfft?md5=8e924cd9a4592418f7b9e727ff8b9bcf&pid=1-s2.0-S0032063324001351-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal modeling of the lunar South Pole: Application to the PROSPECT landing site 月球南极热建模:PROSPECT 着陆场的应用
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-11 DOI: 10.1016/j.pss.2024.105969
Michelangelo Formisano , Maria Cristina De Sanctis , Sarah Boazman , Alessandro Frigeri , David Heather , Gianfranco Magni , Matteo Teodori , Simone De Angelis , Marco Ferrari
{"title":"Thermal modeling of the lunar South Pole: Application to the PROSPECT landing site","authors":"Michelangelo Formisano ,&nbsp;Maria Cristina De Sanctis ,&nbsp;Sarah Boazman ,&nbsp;Alessandro Frigeri ,&nbsp;David Heather ,&nbsp;Gianfranco Magni ,&nbsp;Matteo Teodori ,&nbsp;Simone De Angelis ,&nbsp;Marco Ferrari","doi":"10.1016/j.pss.2024.105969","DOIUrl":"10.1016/j.pss.2024.105969","url":null,"abstract":"<div><p>Water ice is distributed on the surface and in the subsurface of the Moon, as confirmed by observational data, and predicted by several numerical models. In this respect, the direct search for lunar water is the main objective of the ESA’s PROSPECT package, that aims to analyze a region of interest at the lunar South Pole. PROSPECT, originally on the Russian Luna 27, is now on the CLPS (Commercial Lunar Provider Service) “CP” 22 mission. In this work, we applied our 3-D FEM thermophysical model to investigate the landing site selected for the CP 22 mission, which is centred at −84.496°S, 31.588°E, and located on the Leibnitz Plateau and within an area of high elevation. The purpose of our model is to investigate regions of interest (ROI) on the lunar surface by working with the real topography at the scale of 5 m, by using the DEM (Digital Elevation Model) of the region. Since the lunar surface is characterized by topographic variations such as craters or boulders, a 3-D model is preferable over a 1-D numerical model. We produced temperature maps of the surface and 1-D temperature vs depth, as well as we produced illumination maps, computing also the indirect contribution. These simulations will provide a complete thermophysical vision of the landing site, offering a theoretical support to the researchers and engineers of the CP 22 mission, and of future lunar missions. In addition, this model can be applied to every site of the Moon surface and subsurface and, in general, to any airless body of the Solar System.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105969"},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324001338/pdfft?md5=435c93eae4e4dc3fe608a5718e9afa07&pid=1-s2.0-S0032063324001338-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Visual Monitoring Camera (VMC) on Mars Express: A new science instrument made from an old webcam orbiting Mars 火星快车上的视觉监控摄像机(VMC):利用火星轨道上的老式网络摄像头制作的新型科学仪器
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-11 DOI: 10.1016/j.pss.2024.105972
Jorge Hernández-Bernal , Alejandro Cardesín-Moinelo , Ricardo Hueso , Eleni Ravanis , Abel Burgos-Sierra , Simon Wood , Marc Costa-Sitja , Alfredo Escalante , Emmanuel Grotheer , Julia Marín-Yaseli de la Parra , Donald Merrit , Miguel Almeida , Michel Breitfellner , Mar Sierra , Patrick Martin , Dmitri Titov , Colin Wilson , Ethan Larsen , Teresa del Río-Gaztelurrutia , Agustín Sánchez-Lavega
{"title":"The Visual Monitoring Camera (VMC) on Mars Express: A new science instrument made from an old webcam orbiting Mars","authors":"Jorge Hernández-Bernal ,&nbsp;Alejandro Cardesín-Moinelo ,&nbsp;Ricardo Hueso ,&nbsp;Eleni Ravanis ,&nbsp;Abel Burgos-Sierra ,&nbsp;Simon Wood ,&nbsp;Marc Costa-Sitja ,&nbsp;Alfredo Escalante ,&nbsp;Emmanuel Grotheer ,&nbsp;Julia Marín-Yaseli de la Parra ,&nbsp;Donald Merrit ,&nbsp;Miguel Almeida ,&nbsp;Michel Breitfellner ,&nbsp;Mar Sierra ,&nbsp;Patrick Martin ,&nbsp;Dmitri Titov ,&nbsp;Colin Wilson ,&nbsp;Ethan Larsen ,&nbsp;Teresa del Río-Gaztelurrutia ,&nbsp;Agustín Sánchez-Lavega","doi":"10.1016/j.pss.2024.105972","DOIUrl":"10.1016/j.pss.2024.105972","url":null,"abstract":"<div><p>The Visual Monitoring Camera (VMC) is a small imaging instrument onboard Mars Express with a field of view of ∼40°x30°. The camera was initially intended to provide visual confirmation of the separation of the Beagle 2 lander and has similar technical specifications to a typical webcam of the 2000s. In 2007, a few years after the end of its original mission, VMC was turned on again to obtain full-disk images of Mars to be used for outreach purposes. As VMC obtained more images, the scientific potential of the camera became evident, and in 2018 the camera was given an upgraded status of a new scientific instrument, with science goals in the field of Martian atmosphere meteorology. The wide Field of View of the camera combined with the orbit of Mars Express enable the acquisition of full-disk images of the planet showing different local times, which for a long time has been rare among orbital missions around Mars. The small data volume of images also allows videos that show the atmospheric dynamics of dust and cloud systems to be obtained. This paper is intended to be the new reference paper for VMC as a scientific instrument, and thus provides an overview of the updated procedures to plan, command and execute science observations of the Martian atmosphere. These observations produce valuable science data that is calibrated and distributed to the community for scientific use.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105972"},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow dynamics and thermal effects in the ejecta of the multiple-layered Kotka crater on Mars 火星多层科特卡陨石坑喷出岩的流动动力学和热效应
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-06 DOI: 10.1016/j.pss.2024.105957
Fabio Vittorio De Blasio , Fabio Ciceri , Giovanni Battista Crosta
{"title":"Flow dynamics and thermal effects in the ejecta of the multiple-layered Kotka crater on Mars","authors":"Fabio Vittorio De Blasio ,&nbsp;Fabio Ciceri ,&nbsp;Giovanni Battista Crosta","doi":"10.1016/j.pss.2024.105957","DOIUrl":"10.1016/j.pss.2024.105957","url":null,"abstract":"<div><p>The multiple-layered ejecta surrounding crater Kotka (east of Elysium Mons) are studied using imagery and physical modelling. This particular crater was chosen not only because its ejecta are well preserved, but more importantly because the impact area is surrounded by mounds, which provide a means of determining the velocity of the ejecta based on run-up criteria. If the ejecta passed over a mound of a certain height, the velocity was greater than that necessary to rise up that height, while the presence of a shadow beyond the mound indicates a velocity lower than that limit. Top ejecta flow velocities were found to vary between 25 m/s and 80 m/s. Velocities are also determined based on the length of the jump against craters rims, a criterion that provides an estimate of the velocity, rather than a limit, and are found to be compatible with those estimated with run-up criteria. We find that a first train of ejecta travelling at high velocity was capable of overcoming many mounds. A peculiar rampart often visible at the foot of many of the mounds is interpreted as a frozen hydraulic jump indicating a phase in which the ejecta were about to stop.</p><p>The velocity of the ejecta was found to decrease with distance from the rim but not as fast as a constant friction model would suggest, indicating effective friction that increases with distance, and more complex rheology than pure frictional behavior. The velocities indicate a rheology for the fluidized ejecta in which the debris material was completely fluidized, to the point that the friction coefficient decreased by one to two orders of magnitude compared to the one of fragmented rock. Our conceptual model is that the ejecta material initially contained a large amount of solid ice that was fluidized and vaporized by the impact. The chains of pits visible in the ejecta, interpreted as fossilized bubbles of volatiles released through the hot fluidized material, confirm that high temperatures were reached during impact, as also indicated by analytical estimates. Fluidization altered the rheology of the ejecta in a way that has yet to be understood.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105957"},"PeriodicalIF":1.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity of leakage neutrons to the abundance and depth distribution of lunar subsurface water 泄漏中子对月球地下水丰度和深度分布的敏感性
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-06 DOI: 10.1016/j.pss.2024.105968
Hiroki Kusano , Hiroshi Nagaoka , Teruaki Enoto , Naoyuki Yamashita , Yuzuru Karouji , Takeshi Hoshino , Munetaka Ueno , Makoto Hareyama
{"title":"Sensitivity of leakage neutrons to the abundance and depth distribution of lunar subsurface water","authors":"Hiroki Kusano ,&nbsp;Hiroshi Nagaoka ,&nbsp;Teruaki Enoto ,&nbsp;Naoyuki Yamashita ,&nbsp;Yuzuru Karouji ,&nbsp;Takeshi Hoshino ,&nbsp;Munetaka Ueno ,&nbsp;Makoto Hareyama","doi":"10.1016/j.pss.2024.105968","DOIUrl":"10.1016/j.pss.2024.105968","url":null,"abstract":"<div><p>Water on the Moon has received increasing attention due to its importance in planetary science and the utilization of space resources. Future lunar rover missions are poised to conduct explorations, specifically focusing on locating water. Neutron spectroscopy is a powerful technique for estimating subsurface water content. In this study, lunar surface neutrons induced by galactic cosmic rays were investigated through Monte Carlo simulation. This effort aims to yield insights pertinent to in-situ water search explorations utilizing neutron spectrometers. The sensitivity of the leakage neutron intensity to the depth profile of subsurface water within the top 1.5 m soil was obtained via calculations based on a lunar surface model, featuring a localized concentration of water-rich soil. Computational outcomes underscore the potential of neutron observations to provide data on the depth profile of subsurface water under specific circumstances. Notably, in scenarios where a thin and shallow water-rich layer, approximately <span><math><mo>≲</mo></math></span>20 cm thick and located <span><math><mo>≲</mo></math></span>50 cm deep, is assumable within lunar soil of density 1.6 g/cm<sup>3</sup>, a combination of thermal, epithermal, and fast neutron measurements enables concurrent estimation of water abundance and depth. To accurately understand the subsurface water abundance and depth across exploration areas along the rover’s path, a comprehensive assessment of leakage neutrons in a wide energy range becomes indispensable.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105968"},"PeriodicalIF":1.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Martian soil-analogue VI-M1 for large-scale geotechnical experiments 用于大规模岩土工程实验的火星土壤模拟物 VI-M1
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-04 DOI: 10.1016/j.pss.2024.105959
E.N. Slyuta , E.A. Grishakina , V. Yu Makovchuk , A.V. Uvarova , I.A. Agapkin , D.D. Mironov , M.S. Nikitin , E.A. Voznesensky
{"title":"Martian soil-analogue VI-M1 for large-scale geotechnical experiments","authors":"E.N. Slyuta ,&nbsp;E.A. Grishakina ,&nbsp;V. Yu Makovchuk ,&nbsp;A.V. Uvarova ,&nbsp;I.A. Agapkin ,&nbsp;D.D. Mironov ,&nbsp;M.S. Nikitin ,&nbsp;E.A. Voznesensky","doi":"10.1016/j.pss.2024.105959","DOIUrl":"10.1016/j.pss.2024.105959","url":null,"abstract":"<div><p>In the actively evolving research of Mars in recent decades, a special place is occupied by landers and rovers. The diversity of landscapes and soils on Mars, characteristic of terrestrial planets with an atmosphere, makes the development of soil simulators relevant for each new type of terrain in the area of a potential landing site. In the article, based on a comprehensive analysis of the physical and mechanical properties of soils at previous landing sites and a geomorphological analysis of the Oxia Planum plain, the main requirements for the properties of Martian soil analog at the landing site of the ExoMars Rosalind Franklin Mission (RFM) were determined. Readily available technogenic and natural materials have been selected and experimentally justified as components for creating a Martian soil analogue. A methodology for creating the soil analog is presented, and its physical and mechanical properties are measured. The developed Martian soil analog VI-M1 is actively used for large-scale natural experiments, including drop tests of spacecraft in the ExoMars series.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105959"},"PeriodicalIF":1.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
About the improvement in Mars Polar Motion determination from radio tracking of two landers 关于从两个着陆器的无线电跟踪中改进火星极地运动测定的问题
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-09-03 DOI: 10.1016/j.pss.2024.105958
Marta Goli , Sébastien Le Maistre , Marie Yseboodt
{"title":"About the improvement in Mars Polar Motion determination from radio tracking of two landers","authors":"Marta Goli ,&nbsp;Sébastien Le Maistre ,&nbsp;Marie Yseboodt","doi":"10.1016/j.pss.2024.105958","DOIUrl":"10.1016/j.pss.2024.105958","url":null,"abstract":"<div><p>The polar motion of Mars is defined as the movement of the rotation axis with respect to a body-fixed frame tied to the crust of the planet. It is composed of forced motion at annual and sub-annual frequencies caused by the seasonal mass redistribution, formation of the polar ice caps and angular momentum variations of the atmosphere, and of the free mode called the Chandler wobble.</p><p>Radio-tracking data from landers offers the most suitable means to measure the rotation of Mars, including its polar motion. The latter, however, has not yet been achieved using lander data alone. In this study, we assess the uncertainties associated with Mars polar motion estimation using Direct-To-Earth Doppler, range and Same-Beam Interferometry (SBI) observables between multiple landers on the surface of Mars. We evaluate the improvement enabled by combining data from multiple landers with respect to one-lander scenarios, and identify the optimal mission architectures for polar motion estimation by considering the influence of respective mission parameters on the estimation uncertainty. In particular, we consider the effects of absolute and relative locations of the landers and of mission scheduling. We re-evaluate the possibility of estimating the polar motion using data from landers in proximity to the equator, and apply our considerations to simulated data consistent in number and accuracy with that collected by past Martian missions. We notice and explain a strong longitude dependence of the formal errors when the polar motion parameters are estimated concurrently with the seasonal spin variation parameters, making it impossible to properly determine all components of polar motion with a single lander regardless of its location. However, the use of two or more landers in optimal locations with respect to each other eliminates those limitations. We evaluate the influence of latitudinal and longitudinal separation on polar motion determination in such cases. In particular, we are able to determine polar motion well even in cases where the longitudes of the two landers make determination from each single lander impossible.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105958"},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarimetric characterization of Chandrayaan-3 landing site near lunar south pole using high resolution Chandrayaan-2 DFSAR data 利用高分辨率 Chandrayaan-2 DFSAR 数据确定月球南极附近 Chandrayaan-3 着陆场的极地特征
IF 1.8 4区 物理与天体物理
Planetary and Space Science Pub Date : 2024-08-28 DOI: 10.1016/j.pss.2024.105956
Tathagata Chakraborty, Dharmendra Kr. Pandey, Raghav Mehra, Parikshit Parasher, Deepak Putrevu, V.M. Ramanujam, Nilesh M. Desai
{"title":"Polarimetric characterization of Chandrayaan-3 landing site near lunar south pole using high resolution Chandrayaan-2 DFSAR data","authors":"Tathagata Chakraborty,&nbsp;Dharmendra Kr. Pandey,&nbsp;Raghav Mehra,&nbsp;Parikshit Parasher,&nbsp;Deepak Putrevu,&nbsp;V.M. Ramanujam,&nbsp;Nilesh M. Desai","doi":"10.1016/j.pss.2024.105956","DOIUrl":"10.1016/j.pss.2024.105956","url":null,"abstract":"<div><p>The Chandrayaan-3 (CH3) Vikram lander presents an unique opportunity to study the radar scattering behavior of the landing site as well as human-made dihedral structure on the lunar surface. This opportunity is made possible by the Dual-Frequency Synthetic Aperture Radar (DFSAR) sensor onboard the Chandrayaan-2 orbiter, which has the highest resolution and polarimetric capabilities compared to any planetary SAR sensor. To explore this, we utilized DFSAR to capture high-resolution images of the CH3 landing site during pre-landing and post-landing condition, with a pixel spacing as fine as 1 m, in a hybrid-pol mode. The landing site exhibits dominant volume and even-bounce radar scattering behavior similar to an ideal dihedral geometry. Furthermore, we observed an exceptionally high Circular Polarization Ratio value at the landing site (1.99 ± 0.30), a rarity among natural features on the lunar surface. Besides, the landing site is characterized by enhanced average dielectric constant value (5.76 ± 3.11). The post-landing DFSAR image reveals a 177 m<sup>2</sup> area, surrounding the CH3 landing location, characterized by high CPR and elevated even bounce and volume scattering. The drastic enhancement of the average CPR value (7-times), dielectric value (2-times), even bounce and volume scattering in the landing site, in comparison with the pre-landing DFSAR observation, is due to presence of lander module and disturbance in the regolith structure in the landing area. The polarimetric characteristics of the landing site distinguish it from the major natural features on the lunar surface, such as regolith, debris flow, and impact ejecta. This investigation is of utmost importance as it emphasizes the effectiveness of high-resolution DFSAR acquisitions for evaluating the polarimetric behavior of small-scale features, which can be invaluable for characterizing landing sites in upcoming missions.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105956"},"PeriodicalIF":1.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信