Petrology最新文献

筛选
英文 中文
Thermal History and Fluid Regime during the Formation of the Eldjurta Biotite Granite Massif (Greater Caucasus): Reconstructions Based on Isotope (δ18O, δD) and Geochemical Data 埃尔德尤尔塔生物花岗岩群(大高加索地区)形成过程中的热历史和流体制度:根据同位素(δ18O、δD)和地球化学数据进行重建
IF 1 4区 地球科学
Petrology Pub Date : 2024-09-17 DOI: 10.1134/S0869591124700140
E. O. Dubinina, A. S. Avdeenko, A. A. Nosova, Yu. N. Chizhova, S. E. Borisovskiy, O. M. Zhilicheva, A. Ya. Dokuchaev
{"title":"Thermal History and Fluid Regime during the Formation of the Eldjurta Biotite Granite Massif (Greater Caucasus): Reconstructions Based on Isotope (δ18O, δD) and Geochemical Data","authors":"E. O. Dubinina,&nbsp;A. S. Avdeenko,&nbsp;A. A. Nosova,&nbsp;Yu. N. Chizhova,&nbsp;S. E. Borisovskiy,&nbsp;O. M. Zhilicheva,&nbsp;A. Ya. Dokuchaev","doi":"10.1134/S0869591124700140","DOIUrl":"10.1134/S0869591124700140","url":null,"abstract":"<div><p>Based on the geochemical and isotopic (δ<sup>18</sup>О, δD) data, the thermal and fluid conditions during the formation of the Eldjurta granite massif were reconstructed. Analysis of rocks collected from the core of the Tyrnyauz Superdeep Well (TSW) within the depth range of 1427–3923 m revealed their homogeneous isotopic parameters: the δ<sup>18</sup>O values of bulk samples, quartz, feldspars, and biotite in 12 samples of biotite granites are 8.50 ± 0.33, 9.55 ± 0.22, 8.40 ± 0.33 and 5.45 ± 0.40‰, respectively. The δD values in the biotite vary from −103.3 to −95.6‰. The closure temperatures of the oxygen isotope system of quartz are 440–980°C. The rock cooling history was reconstructed using a new approach based on the analysis of single quartz grains. This approach can be used for detailed reconstructions of thermal history during formation of intrusive bodies. The definite samples were used to demonstrate that Dodson’s equation is valid for description of the δ<sup>18</sup>O values of quartz in a granite system. The data obtained suggest that the studied part of the massif was formed in at least two almost simultaneous stages. The lower part of the massif was crystallized first, and the second injection of granite melt arrived immediately after the first portion has been crystallized, but had no yet had time to cool significantly. The Tc values in the lower part of the massif indicate the re-opening of the oxygen isotope system of quartz, with subsequent long-term isotope re-equilibration between minerals. This leads to decrease of the observed Tc values and the calculated cooling rates, which is related to increasing volume of the intrusive body and cooling within already heated rocks. Estimates of the isotopic parameters of the water component indicate the absence of exotic water fluid (meteoric or buried waters) during cooling of the massif. The variations of the δ<sup>18</sup>O values in the minerals of the Eldjurta biotite granites can be described in terms of a simple retrograde exchange at the cooling stage.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"595 - 613"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The First Discovery of Archean Dolerite Dikes in the Western Part of the Aldan Shield 在阿尔丹地盾西部地区首次发现阿新纪辉绿岩尖峰
IF 1 4区 地球科学
Petrology Pub Date : 2024-09-17 DOI: 10.1134/S0869591124700152
K. G. Erofeeva, Yu. O. Larionova, A. V. Samsonov
{"title":"The First Discovery of Archean Dolerite Dikes in the Western Part of the Aldan Shield","authors":"K. G. Erofeeva,&nbsp;Yu. O. Larionova,&nbsp;A. V. Samsonov","doi":"10.1134/S0869591124700152","DOIUrl":"10.1134/S0869591124700152","url":null,"abstract":"<p>Dolerite dikes were studied in the western part of the Aldan terrane, in the middle reaches of the Tokko River. These dolerite dikes form a swarm of submeridional trend about 1 km wide. The dolerites of the thickest dike preserve their primary textural and structural features and mineral composition: plagioclase + pigeonite + augite + titanomagnetite. Dolerite in the chilled margins and central parts of the dike are homogeneous in composition, corresponds to low-Mg tholeiites, has low contents of Ti and other HFSE, with weak enrichment in light REE and small negative Nb anomalies. Sm–Nd isotope data on magmatic minerals of dolerite from the central part of the dike yield a good linear regression in an isochron diagram that gives to an age of 2510 ± 64 Ma, which probably corresponds to the crystallization age of the basalt. Metadolerites in a thin dike retain plagioclase porphyritic structures, but the pyroxenes are completely replaced by amphibole and chlorite. The metadolerites are contrastingly different in low contents of MgO, Cr, and Ni and in higher contents of TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, Nb, and all REE. The differences in the composition of the dikes may be explained by the longterm (about 65%) crystallization differentiation of the initial melt and the emplacement of the residual melt from a shallow intermediate magma chamber via opening cracks. Such conditions probably may have existed in tectonically stable intraplate settings. The age of the dolerites of the dike swarm is comparable to that of the anorogenic granites of the Nelyuki complex (~2.4–2.5 Ga), which are widespread in the western part of Aldan granulite–gneiss terrane. Our data bridge some gaps in characteristics of intraplate anorogenic magmatism that occurred in the western Aldan Shield in the Late Archean and marked the final consolidation of a large block of Archean crust in the Chara–Olekma granite–greenstone area.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"642 - 652"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0869591124700152.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genesis of Triassic Buziwannan Granites in the West Kunlun Orogen Belt, China: Constraints from in Situ Major, Trace and Sr Isotope Analyses of Plagioclase 中国西昆仑造山带三叠纪布子湾南花岗岩的成因:斜长岩原位主要、微量和锶同位素分析的制约因素
IF 1 4区 地球科学
Petrology Pub Date : 2024-09-17 DOI: 10.1134/S086959112470019X
Lin Wang, Peiwen Chen, Qingdong Zeng, Renchang Mi, Runsheng Han
{"title":"Genesis of Triassic Buziwannan Granites in the West Kunlun Orogen Belt, China: Constraints from in Situ Major, Trace and Sr Isotope Analyses of Plagioclase","authors":"Lin Wang,&nbsp;Peiwen Chen,&nbsp;Qingdong Zeng,&nbsp;Renchang Mi,&nbsp;Runsheng Han","doi":"10.1134/S086959112470019X","DOIUrl":"10.1134/S086959112470019X","url":null,"abstract":"<p>Buziwannan granodiorite and monzogranite associated with gold–polymetallic mineralization are located in the West Kunlun Orogen Belt in northwest China. Granodiorite was emplaced earlier than monzogranite. To determine the genesis of plagioclase from two intrusions and their relation with mineralization, the major, trace elemental, and Sr isotopic compositions of plagioclase were determined through LA-ICP-MS and LA-MC-ICP-MS respectively. The results indicated that the plagioclase from granodiorite had a high-An (around 40%) core and low-An (around 33%) rim, while the plagioclase from monzogranite was uniform with an An value around 18%. The (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> ratios of plagioclase decreased with decreasing An value, which may be caused by small-scale crustal contamination and/or magma mixing. The crystallization process of plagioclase is mainly accompanied by the exsolution of magmatic H<sub>2</sub>O, and the pressure changes caused by the loss of magma H<sub>2</sub>O. These magmatic fluids are rich in ore-forming elements, such as Au–Ag–Cu–Zn, and form skarn mineralization near the wall rocks. Because of the co-crystallization of plagioclase, hornblende, and biotite, as well as the addition of minor felsic magma with lower Sr isotopic composition, the plagioclase from monzogranite exhibits low and uniform <i>An</i> values. In addition, a large amount of magmatic H<sub>2</sub>O carrying ore-forming elements was released during the emplacement of granodiorite, which caused the monzogranite to lose its metallogenic potential.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 5","pages":"700 - 715"},"PeriodicalIF":1.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142261414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amudzhikan Volcano-Plutonic Association of the Eastern Part of the West-Stanovoy Superterrane (Central Asian Orogenic Belt): Age, Sources, and Tectonic Setting 西-斯坦诺沃伊超断裂带(中亚造山带)东部的阿穆奇坎火山-岩浆岩协会:年龄、来源和构造背景
IF 1 4区 地球科学
Petrology Pub Date : 2024-07-15 DOI: 10.1134/S0869591124700103
A. M. Larin, A. B. Kotov, E. B. Sal’nikova, V. P. Kovach, V. M. Savatenkov, S. D. Velikoslavinskii, N. G. Rizvanova, N. A. Sergeeva, T. M. Skovitina, N. Y. Zagornaya
{"title":"Amudzhikan Volcano-Plutonic Association of the Eastern Part of the West-Stanovoy Superterrane (Central Asian Orogenic Belt): Age, Sources, and Tectonic Setting","authors":"A. M. Larin,&nbsp;A. B. Kotov,&nbsp;E. B. Sal’nikova,&nbsp;V. P. Kovach,&nbsp;V. M. Savatenkov,&nbsp;S. D. Velikoslavinskii,&nbsp;N. G. Rizvanova,&nbsp;N. A. Sergeeva,&nbsp;T. M. Skovitina,&nbsp;N. Y. Zagornaya","doi":"10.1134/S0869591124700103","DOIUrl":"10.1134/S0869591124700103","url":null,"abstract":"<div><p>Geochronological (U-Pb zircon, ID-TIMS), isotope-geochemical (Nd, Sr, Pb), and geochemical studies of rocks of the Amanan and Amudzhikan intrusive complexes and volcanic rocks of the Ukurey Formation in the eastern part of the West Stanovoy superterrane of the Central Asian Orogenic Belt were performed. The assignment of granitoids of these complexes to high-potassium C-type adakites is substantiated. It is established that the studied rocks are cogenetic and can be ascribed to a single Amudzhikan volcano-plutonic association formed in the age range of 133 ± 1–128 ± 1 Ma. The igneous complexes of this association belong to the Stanovoy volcano-plutonic belt, which extends in the sublatitudinal direction from the Pacific Ocean inward the North Asian continent for more than 1000 km, subparallel to the Mongol-Okhotsk suture zone, and assembles the tectonic structures of the Dzhugdzhur-Stanovoy and West-Stanovoy superterranes. The formation of the Stanovoy Belt is related to the closure of the Mongolo-Okhotsk Ocean and the collision between North Asian and Sino-Korean continents at ~140 Ma. The subsequent collapse of the collisional orogen, which was accompanied by large-scale lithospheric extension and delamination of the lower part of the continental lithosphere, led to upwelling of asthenospheric mantle. This caused melting of the lithospheric mantle and continental crust and, as a consequence, the formation of both mafic (shoshonitic) melts and anatectic crustal melts of the adakite type. The mixing of these melts led to the formation of the parental magmas of the Amudzhikan magmatic association. The crustal component in the source was of heterogeneous nature and finally formed as a result of the Early Cretaceous collision event. It is characterized by the upper-crustal isotopic signatures: increased Rb/Sr and U/Pb ratios and a decreased Sm/Nd ratio in the source. The mantle component is represented by enriched lithospheric mantle of the Central Asian Orogenic Belt, the formation of which is associated with subduction processes and closure of the Mongol-Okhotsk paleoocean. Metasomatic transformation of the mantle with the introduction of melts and fluids with isotopic parameters of an EMII-type source or upper crust occurred at this stage.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"502 - 533"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gneisses and Granitoids of the Basement of the Nepa-Botuoba Anteclise: Constraints for Relation of the Archean and Paleoproterozoic Crust in the Boundary Zone between the Tungus Superterrane and Magan Terrane (South Siberian Craton) 尼帕-博图奥巴反斜长岩基底片麻岩和花岗岩:通古斯超岩系和马干地层(南西伯利亚克拉通)边界带的阿新世和古新生代地壳关系的制约因素
IF 1 4区 地球科学
Petrology Pub Date : 2024-07-15 DOI: 10.1134/S0869591124700139
O. M. Turkina, A. V. Plyusnin, T. V. Donskaya, I. V. Afonin, S. S. Sanin
{"title":"Gneisses and Granitoids of the Basement of the Nepa-Botuoba Anteclise: Constraints for Relation of the Archean and Paleoproterozoic Crust in the Boundary Zone between the Tungus Superterrane and Magan Terrane (South Siberian Craton)","authors":"O. M. Turkina,&nbsp;A. V. Plyusnin,&nbsp;T. V. Donskaya,&nbsp;I. V. Afonin,&nbsp;S. S. Sanin","doi":"10.1134/S0869591124700139","DOIUrl":"10.1134/S0869591124700139","url":null,"abstract":"<div><p>The paper presents geochemical and geochronological data on gneisses and granitoids from three deep boreholes (Yalykskaya-4, Danilovskaya-532, Srednenepskaya-1) in the basement of the southwestern part of the Nepa-Botuoba anteclise. Based on U-Pb zircon dating, three stages of granitoid magmatism were identified: ∼2.8, 2.0 and 1.87 Ga. At ca. 2.8 Ga magmatic TTG protoliths of biotite–amphibole gneisses (Yalykskaya-4 borehole) were formed, these rocks represent the Mesoarchean crust and experienced thermal effects typical of the Tungus superterrane of the Siberian craton at the terminal Neoarchean (∼2.53 Ga). Biotite gneissic granites (∼2.0 Ga) (Danilovskaya-532 borehole), which correlate in age with the granitoids of the basement of the Magan terrane and the Akitkan orogenic belt, were derived from a metasedimentary source formed by the erosion of predominantly Paleoproterozoic juvenile crust rocks. The 1.88 Ga A-type granite (Srednenepskaya-1 borehole) corresponds to the main stage of post-collision granite magmatism within the South Siberian magmatic belt. The ca. 2.8 Ga biotite–amphibole gneisses mark the eastern boundary of the Archean crust with Paleoproterozoic juvenile crust in the south of the Tungus superterrane, which are separated by a transitional zone intruded by granites having intermediate isotopic characteristics. The isotopic composition of Paleoproterozoic gneisses and granitoids indicates that marginal southern Magan terrane in contact with the Tungus superterrane includes blocks of both Archean and Paleoproterozoic crust, thus showing similarity with the Akitkan orogenic belt and accretionary orogens. The final amalgamation of the Tungus superterrane with blocks of the eastern part of the Siberian platform basement corresponds to a milestone of 1.88 Ga.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"569 - 593"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titanium Partitioning between Zircon and Melt: an Experimental Study at High Temperatures 锆石与熔体之间的钛分离:高温下的实验研究
IF 1 4区 地球科学
Petrology Pub Date : 2024-07-15 DOI: 10.1134/S0869591124700085
A. A. Borisov, S. E. Borisovskiy
{"title":"Titanium Partitioning between Zircon and Melt: an Experimental Study at High Temperatures","authors":"A. A. Borisov,&nbsp;S. E. Borisovskiy","doi":"10.1134/S0869591124700085","DOIUrl":"10.1134/S0869591124700085","url":null,"abstract":"<div><p>Experiments on titanium partitioning between zircon and silicate melt were conducted at temperatures 1300 and 1400°С at 1 atm total pressure. Additionally, the Ti content in zircons of a few experimental series from (Borisov and Aranovich, 2019) was measured and a critical analysis of experimental literature was carried out. It was demonstrated that at high temperatures (1200–1450°С) D<sup>Ti</sup> values lie in the range from 0.02 to 0.04 regardless of pressure, melt composition, and water content. Based on obtained data, the impossibility of zircon crystallization from high temperature basic melts once more was shown. It was shown that “Ti in zircon” geothermometer cannot describe Ti content in our experimental zircons and, possibly, cannot be applied to dry high-titanium melts at 1 atm total pressure.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"467 - 477"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three Types of Olivine Crystal Size Distribution in Dunites from the Yoko-Dovyren Layered Massif as Signals of Their Different Crystallization History 横沟-多维连层状块岩中三种类型的橄榄石晶体尺寸分布是其不同结晶历史的信号
IF 1 4区 地球科学
Petrology Pub Date : 2024-07-15 DOI: 10.1134/S0869591124700115
S. N. Sobolev, A. A. Ariskin, G. S. Nikolaev, I. V. Pshenitsyn
{"title":"Three Types of Olivine Crystal Size Distribution in Dunites from the Yoko-Dovyren Layered Massif as Signals of Their Different Crystallization History","authors":"S. N. Sobolev,&nbsp;A. A. Ariskin,&nbsp;G. S. Nikolaev,&nbsp;I. V. Pshenitsyn","doi":"10.1134/S0869591124700115","DOIUrl":"10.1134/S0869591124700115","url":null,"abstract":"<p>Crystal size distributions (CSD) of olivine were obtained for 17 samples of plagiodunite and <i>Pl</i>‑bearing dunite from the central part of the Yoko-Dovyren massif, northern Baikal region, Russia. Three types of CSD were identified: loglinear, bimodal, and lognormal. Combining these data with the results of petrological reconstructions, which earlier revealed two main types of the Dovyren magmas (using the method of geochemical thermometry), we proposed a basic scenario of interaction between magmatic suspensions of different temperature to explain the diversity of the CSD. The intratelluric olivine transported by magmas of different temperature, which had not subjected to abrupt cooling or heating in the chamber, retained an original loglinear CSD. For some portions of the hottest magma (∼1290°C), it is assumed that the original olivine evolved into a bimodal CSD due to accelerated crystallization at faster cooling of the high-temperature injections contacting relatively cold crystal mush (∼1190°C). An interpretation of the lognormal CSD suggests that part of the olivine crystals composing the protocumulate systems efficiently interacted with the pore melt infiltrating upward during the compaction of the underlying crystal mush. This led to cycles of partial dissolution and regrowth of the olivine grains resulting in a final lognormal CSD. The infiltrating hot melt, which was undersaturated with immiscible sulfide liquid, could dissolve sulfides preexisting in the low-temperature mush. This produced dunites with lognormal CSD relatively depleted in sulfur and chalcophile elements. The lognormal CSD is considered to be a marker of crystal mush regions through which the focused infiltration of the pore melt proceeded.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"534 - 550"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Liquid Immiscibility in the Formation of the Rare Metal Granites of the Katugin Massif, Aldan Shield 液体不溶性在阿尔丹地盾卡图金地块稀有金属花岗岩形成过程中的作用
IF 1 4区 地球科学
Petrology Pub Date : 2024-07-15 DOI: 10.1134/S0869591124700127
E. V. Tolmacheva, S. D. Velikoslavinskii, A. B. Kotov, A. M. Larin, E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, T. M. Skovitina, V. P. Kovach, O. L. Galankina
{"title":"Role of Liquid Immiscibility in the Formation of the Rare Metal Granites of the Katugin Massif, Aldan Shield","authors":"E. V. Tolmacheva,&nbsp;S. D. Velikoslavinskii,&nbsp;A. B. Kotov,&nbsp;A. M. Larin,&nbsp;E. V. Sklyarov,&nbsp;D. P. Gladkochub,&nbsp;T. V. Donskaya,&nbsp;T. M. Skovitina,&nbsp;V. P. Kovach,&nbsp;O. L. Galankina","doi":"10.1134/S0869591124700127","DOIUrl":"10.1134/S0869591124700127","url":null,"abstract":"<p>The paper discusses possible immiscibility between fluoride salt (“cryolite”) and silicate liquids into which the parental melt of the Katugin massif exsolves, and the petrological implications of this phenomenon. Results of a detailed study of the cryolite and zircon are presented. Liquid immiscibility is demonstrated to have triggered the massive crystallization of zircon and, together with the processes of subsequent evolution of the cryolite melt, contributed to the formation of the large cryolite bodies. Data on mineral-hosted inclusions were used to estimate the crystallization temperatures of fluoride salt and silicate melts and outline the pathways of their evolution during the formation of the massif. It is shown that the granites of the Katugin and West Katugin massifs were most likely derived from distinct sources, that differed mainly in fluorine content. Data on the chemical composition of three zircon generations identified in the granites of the Katugin massif are presented.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"551 - 568"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of Fluids during Metasomatic Alteration of Metamorphic Rocks under P–T Conditions of the Middle Crust: An Example from the Bolshie Keivy Region, Belomorian–Lapland Orogen, Fennoscandian Shield 中地壳 P-T 条件下变质岩变质蜕变过程中流体的性质:以芬诺斯堪地盾贝洛莫利亚-拉普兰造山带博尔希-凯维地区为例
IF 1 4区 地球科学
Petrology Pub Date : 2024-07-15 DOI: 10.1134/S0869591124700097
S. A. Bushmin, Y. A. Vapnik, M. V. Ivanov, A. B. Kol’tsov, Y. M. Lebedeva, O. V. Aleksandrovich, E. V. Savva
{"title":"Properties of Fluids during Metasomatic Alteration of Metamorphic Rocks under P–T Conditions of the Middle Crust: An Example from the Bolshie Keivy Region, Belomorian–Lapland Orogen, Fennoscandian Shield","authors":"S. A. Bushmin,&nbsp;Y. A. Vapnik,&nbsp;M. V. Ivanov,&nbsp;A. B. Kol’tsov,&nbsp;Y. M. Lebedeva,&nbsp;O. V. Aleksandrovich,&nbsp;E. V. Savva","doi":"10.1134/S0869591124700097","DOIUrl":"10.1134/S0869591124700097","url":null,"abstract":"<p>Properties of fluids under <i>P–T</i> conditions of the middle crust were studied with reference to the metasomatic alteration of metamorphic rocks (amphibolite facies) of the Bolshie Keivy nappe of the Keivy terrane of the Belomorian–Lapland collision orogen of the Fennoscandian shield. Properties of the fluids were studied in five selected types of rocks: metamorphic schists and gneisses with graphite, metasomatic quartz rocks with a high content of graphite, kyanite–quartz veins with wall-rock metasomatites, and metasomatic quartz-bearing kyanite rocks and anchimonomineral quartz veins. NaCl, CaCl<sub>2</sub>, CO<sub>2</sub>, N<sub>2</sub>, CH<sub>4,</sub> heavier hydrocarbons, and graphite were identified in the fluid inclusions using microthermometry and Raman spectroscopy. Using the method of multiequilibrium thermobarometry for mineral associations and the density of CO<sub>2</sub> inclusions, a retrograde <i>P–T</i> path was calculated, which reflects the <i>P–T</i> exhumation history of the rocks. An explanation was proposed for the presence of water inclusions with NaCl of low salinity among inclusions of high salinity with NaCl and CaCl<sub>2</sub>. Comparison of data on the H<sub>2</sub>O activity (inferred from mineral equilibria) and salt content (data on fluid inclusions) with those of a model fluid (thermodynamic model of the H<sub>2</sub>O–NaCl–CaCl<sub>2</sub>–CO<sub>2</sub> system) showed a good agreement between natural and model data. Natural and model data were synthesized to analyze variations in the phase state and chemical composition, fluid properties, including H<sub>2</sub>O activity, density, and salinity along the retrograde <i>P–T</i> trend.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 4","pages":"478 - 501"},"PeriodicalIF":1.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamorphosed Ultramafic and Mafic Lithoclasts and Detrital Minerals from Sandstones of Clastic Ophiolitic Deposits of the Rassokha Terrane: A Setting of Formation of the Chersky Range Ophiolites 拉索卡地层碎屑蛇绿岩沉积砂岩中变质的超基性和镁基性岩屑和碎屑矿物:切尔斯基山脉蛇绿岩的形成背景
IF 1 4区 地球科学
Petrology Pub Date : 2024-05-27 DOI: 10.1134/S0869591124700048
G. V. Ledneva, B. A. Bazylev, S. N. Sychev, A. V. Rogov
{"title":"Metamorphosed Ultramafic and Mafic Lithoclasts and Detrital Minerals from Sandstones of Clastic Ophiolitic Deposits of the Rassokha Terrane: A Setting of Formation of the Chersky Range Ophiolites","authors":"G. V. Ledneva,&nbsp;B. A. Bazylev,&nbsp;S. N. Sychev,&nbsp;A. V. Rogov","doi":"10.1134/S0869591124700048","DOIUrl":"10.1134/S0869591124700048","url":null,"abstract":"<p>Ophiolite-derived clastic rocks of the Rassokha terrane in the Chersky Range of the Verkhoyansk−Kolyma folded area were studied to obtain representative characteristics of the eroded source metamorphosed ultramafic and mafic rocks, to gain an insight into the possible geodynamic setting in which the protoliths of these rocks were formed, and to identify the possible source of the eroded material. The composition of lithoclasts and detrital minerals of the serpentinite and listwanite sandstones suggests that their source was composed of serpentinite, chloritite, listwanite, and dolomite rocks and that this source was proximal. Prior to the source erosion, the ultramafic and mafic rocks were metamorphosed and recrystallized, listwanite was formed, and the ultramafic rocks were tectonically disintegrated and combined with units of carbonate rocks (dolomite). Ultramafic rocks from lithoclasts experienced allochemical metamorphic retrogression during at least the latest stage of their serpentinization in a nonoceanic setting, where also the listwanite was formed. The Late Neoproterozoic ophiolites of the collisional belt of the Chersky Range were the most probable source for the protoliths of the clastic material. The protoliths of the ophiolite rock were probably formed in a backarc setting. Considered together with the published ages, our data indicate that relics of suprasubduction oceanic lithosphere of the Neoproterozoic basin occurred in the Chersky Range.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 3","pages":"422 - 448"},"PeriodicalIF":1.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信