Petrology最新文献

筛选
英文 中文
Comparative Characteristics of the Layering of Mafic–Ultramafic Intrusions of the Oulanka Group, Northern Karelia 北卡累利阿奥兰卡群镁铁质-超镁铁质岩体层状对比特征
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-11-15 DOI: 10.1134/S0869591122060091
A. R. Tskhovrebova, E. V. Koptev-Dvornikov, D. A. Bychkov
{"title":"Comparative Characteristics of the Layering of Mafic–Ultramafic Intrusions of the Oulanka Group, Northern Karelia","authors":"A. R. Tskhovrebova,&nbsp;E. V. Koptev-Dvornikov,&nbsp;D. A. Bychkov","doi":"10.1134/S0869591122060091","DOIUrl":"10.1134/S0869591122060091","url":null,"abstract":"<p>The Oulanka group is a compact group of three peridotite–gabbronorite intrusions that is convenient for testing various petrogenetic concepts. The three intrusions are similar in age and occur not far from one another but differ in the composition of their original magmas, are characterized by different sets of cumulus mineral assemblages, and are different in inner structure and rhythmic layering. We applied cluster analysis of the contents of major elements to reproduce the cumulus mineral assemblages of the isochemically altered rocks of the Tsipringa and Lukkulaisvaara massifs. Although the parental magmas of the Kivakka and Tsipringa massifs were of different composition and their crystallization sequences were also different, the vertical sections of these massifs can be clearly subdivided into zones according to their cumulus mineral assemblages, with the limited development of rhythmic interbedding (with individual rhythms ranging from a few to a few dozen meters in thickness). Conversely, the Lukkulaisvaara intrusion does not possess any clearly distinguishable cumulus zones, and large-scale rhythmic layering is traceable throughout the entire thickness of the massif (with rhythms ranging from a few dozen to a few hundred meters in thickness). The different character of the rhythmic layering of the three intrusions may provide an insight into the different scenarios of magma convection in the chambers.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"610 - 627"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4627358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of CO2 Reduction in Low-Water Melts at Low Hydrogen Fugacity: Experiment at 500 MPa and Thermodynamic Model 低氢逸度低水熔体中CO2还原的影响:500 MPa实验和热力学模型
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-11-15 DOI: 10.1134/S0869591122060078
A. G. Simakin, V. N. Devyatova, G. V. Bondarenko
{"title":"The Effect of CO2 Reduction in Low-Water Melts at Low Hydrogen Fugacity: Experiment at 500 MPa and Thermodynamic Model","authors":"A. G. Simakin,&nbsp;V. N. Devyatova,&nbsp;G. V. Bondarenko","doi":"10.1134/S0869591122060078","DOIUrl":"10.1134/S0869591122060078","url":null,"abstract":"<div><p>Formation of graphite was observed in experiments on synthesis of dry carbon-bearing albite glasses in platinum capsules in an Internally Heated Pressure Vessel at 500 MPa and <i>Т</i> = 1200–1250°С. A thermodynamic model is proposed that explains the achievement of low oxygen fugacity near QFM-2 in the melt at low fugacity of hydrogen formed due to the decomposition of trace amounts of water in a compression medium (Ar gas). The unexpectedly low fugacity of oxygen is explained by the shift of equilibrium between the gases dissolved in the melt CO<sub>2</sub> + H<sub>2</sub> = H<sub>2</sub>O + CO to the right due to the low activity of molecular water at a low total content of H<sub>2</sub>O ~ 0.1–0.5 wt %. The high local СО concentrations in the melt lead to the platinum dissolution in form of carbonyl, corrosion of capsule walls, and redeposition of the metal at the contact with melt. With increase of water concentration in the melt (&gt;1 wt %), the effect of reduction disappears.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"640 - 651"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4629163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eastern Margin of the Neoarchean Tunguska Superterrane: Data from Boreholes in the Central Part of the Siberian Platform 新太古代通古斯超级地体的东缘:西伯利亚地台中部钻孔资料
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-11-15 DOI: 10.1134/S0869591122050058
A. V. Samsonov, K. G. Erofeeva, Yu. O. Larionova, A. N. Larionov, N. B. Kuznetsov, T. V. Romanyuk, N. V. Solovyova, O. M. Zhilicheva, A. S. Dubenskiy, V. S. Sheshukov
{"title":"Eastern Margin of the Neoarchean Tunguska Superterrane: Data from Boreholes in the Central Part of the Siberian Platform","authors":"A. V. Samsonov,&nbsp;K. G. Erofeeva,&nbsp;Yu. O. Larionova,&nbsp;A. N. Larionov,&nbsp;N. B. Kuznetsov,&nbsp;T. V. Romanyuk,&nbsp;N. V. Solovyova,&nbsp;O. M. Zhilicheva,&nbsp;A. S. Dubenskiy,&nbsp;V. S. Sheshukov","doi":"10.1134/S0869591122050058","DOIUrl":"10.1134/S0869591122050058","url":null,"abstract":"<p>The paper presents data on granites and gneisses recovered by Kulindinskaya-1 hole drilled in the central part of the Siberian Craton. The biotite granites retain a porphyritic texture, correspond to I-type according to their compositional features, are enriched in LREE and moderately depleted in HREE, and have negative Eu, Sr, and Nb and positive Zr anomalies. The U−Pb zircon age of the granites is Neoarchean (2525 ± 10 Ma), with single cores of zircon grains dated at about 2.6 Ga, which likely suggests a crustal source of the granitic magmas. The model age T<sub>Nd</sub>(DM) = 2.77 Ga of the granite shows that the crust from which the initial melts were derived had been formed shortly before the melting episode. In terms of age and all characteristics, the granites are close to those of the Yurubchen massif, which was drilled through in the western part of the Tunguska superterrane. The biotite gneiss was apparently derived from sedimentary rocks and was heavily reworked when the granites were emplaced. The enrichment of the gneiss in Cr and Ni is probably inherited from the sedimentary protolith, whereas the REE, HFSE, and LILE concentrations and distribution in the gneiss are similar to those of the granite. The concordant (<i>D</i> &lt; 1%) U−Pb zircon ages (according to LA-ICP-MS data) broadly vary from 3284 to 2620 Ma, with two major peaks at 2717 and 2678 Ma. The model age of the gneiss T<sub>Nd</sub>(DM) = 2.91 Ga confirms a contribution of the ancient crustal component to the sedimentary protolith of the rock. The minimum age of the detrital zircon, 2.62 Ga, determines the maximum age limit for sedimentation, and the minimum age limit is set by the age of the granite intrusions at 2.53 Ga. According to our data, the Archean gneisses and granites recovered by the Kulindinskaya-1 drillhole probably compose the eastern part of the Neoarchean Tunguska superterrane. Ereminskaya-101 drillhole, which was drilled 20 km northeast of Kulindinskaya-1, recovered gneisses with model ages T<sub>Nd</sub>(DM) from 2.30 to 2.37 Ga, which belong to the adjacent Taimyr−Baikal suture zone with widespread Paleoproterozoic rocks. The contrasting crustal history of the adjacent complexes provides grounds to suggest that they were tectonically combined, which is an additional reason to consider the Taimyr−Baikal suture zone as a Paleoproterozoic collisional orogen.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"628 - 639"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0869591122050058.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4624540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tantalite Solubility in Granitoid Melts and Evaluation of the Ta and Nb Diffusion Coefficients 花岗岩熔体中钽的溶解度及Ta、Nb扩散系数的评定
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-11-15 DOI: 10.1134/S0869591122060030
V. Yu. Chevychelov
{"title":"Tantalite Solubility in Granitoid Melts and Evaluation of the Ta and Nb Diffusion Coefficients","authors":"V. Yu. Chevychelov","doi":"10.1134/S0869591122060030","DOIUrl":"10.1134/S0869591122060030","url":null,"abstract":"<p>The paper presents experimental data on tantalite solubility in water-saturated granitoid melts with various alumina and alkaline elements concentrations at <i>T</i> = 650–850°C and <i>P</i> = 100 MPa. The maximum Ta concentration (effective solubility) in melt is shown to be always higher than the Nb concentration. As the melt composition is changed from alkaline to Al<sub>2</sub>O<sub>3</sub>-enriched, the Ta and Nb concentrations decrease by one to two orders of magnitude, and the Nb/Ta ratio simultaneously decreases (from ~0.8–0.7 to ~0.4–0.1) because the Nb concentration decreases notably more rapidly than that of Ta. This effect is enhanced at decreasing temperature. The effective Ta solubility in melt is demonstrated to be practically independent of the composition of the dissolving mineral of the columbite-tantalite series. The Ta, Nb, Mn, and Fe diffusion coefficients in granitoid melts are estimated. The Ta and Nb diffusion coefficients at <i>T</i> = 750°C and <i>P</i> = 100 MPa are ~10<sup>–10</sup> cm<sup>2</sup>/s, and those of Fe and Mn are ~10<sup>–8.5</sup> cm<sup>2</sup>/s. With an increase in temperature from 740 to 980°C, all of the diffusion coefficients increase by approximately 1.5 orders of magnitude. The configurations of the diffusion profiles of Ta concentration in melts change differently depending on change in the composition of the melt, temperature, or pressure.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"652 - 670"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4629135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-Os Isotope and HSE Abundance Systematics of the 2.9 Ga Komatiites and Basalts from the Sumozero-Kenozero Greenstone Belt, SE Fennoscandian Shield: Implications for the Mixing Rates of the Mantle Fennoscandian Shield东南sumo0 - kenozero绿岩带2.9 Ga科马提岩和玄武岩Re-Os同位素和HSE丰度系统:地幔混合速率的意义
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-11-15 DOI: 10.1134/S0869591122060054
Igor S. Puchtel
{"title":"Re-Os Isotope and HSE Abundance Systematics of the 2.9 Ga Komatiites and Basalts from the Sumozero-Kenozero Greenstone Belt, SE Fennoscandian Shield: Implications for the Mixing Rates of the Mantle","authors":"Igor S. Puchtel","doi":"10.1134/S0869591122060054","DOIUrl":"10.1134/S0869591122060054","url":null,"abstract":"<p>Rhenium-Os isotope and highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) abundance systematics of Archean komatiites can be used to estimate the stirring rates of the mantle for the HSE and the timing of homogenization of late accreted materials within the mantle. In this study, we report Re-Os isotope and HSE abundance data for ~2.9 Ga komatiites and basalts from the Sumozero-Kenozero greenstone belt in the SE Fennoscandian Shield. The lavas are characterized by excellent preservation of the primary textural, chemical, and Re-Os isotope characteristics. The Re-Os isotopic data for spinifex-textured and cumulate komatiite and massive basalt samples from the lowermost sequences define a precise 10-point isochron (MSWD = 2.6) with an age of 2904 ± 18 Ma and an initial <sup>187</sup>Os/<sup>188</sup>Os = 0.10758 ± 18 (γ<sup>187</sup>Os(2904) = +0.45 ± 0.17). This is the first direct age determination for the Sumozero-Kenozero lower komatiite-basalt sequences. Our modeling indicates that the mantle source of the komatiites and basalts evolved with a time-integrated <sup>187</sup>Re/<sup>188</sup>Os = 0.418 ± 6. This ratio is well within the uncertainty of the bulk chondritic average <sup>187</sup>Re/<sup>188</sup>Os = 0.410 ± 51 (2SD), also consistent with the chondritic evolution of the majority of komatiite mantle sources observed globally. The mantle source of the Sumozero-Kenozero komatiites has been calculated to contain the total HSE abundances of 58 ± 7% of those in the estimates for modern Bulk Silicate Earth (BSE). This estimate is in the middle of the range for other late Archean and Proterozoic komatiite systems. Using the estimated HSE abundances in the sources of komatiite systems as a function of their ages and ISOPLOT regression analysis, we calculated the average time in the past by which late accreted materials have been completely homogenized within the mantle to be 2.48 ± 0.23 Ga. These data require that the residence times of the late accreted planetesimals within the mantle, before complete homogenization, were on average 1.92 ± 0.23 Ga. This estimate represents a constraint on the average mixing rates of the mantle in terms of the HSE abundances in the Hadean and the Archean.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"548 - 566"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4626498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Kulikovs: A Family of Geologists. Vyacheslav Stepanovich Kulikov, Viktoria Vladimirovna Kulikova, and Yana Vyacheslavovna Bychkova (Kulikova) 库利科夫家族:地质学家家族。Vyacheslav Stepanovich Kulikov、Viktoria Vladimirovna Kulikova和Yana Vyachesravovna Bychkova
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-11-15 DOI: 10.1134/S0869591122060108
{"title":"The Kulikovs: A Family of Geologists. Vyacheslav Stepanovich Kulikov, Viktoria Vladimirovna Kulikova, and Yana Vyacheslavovna Bychkova (Kulikova)","authors":"","doi":"10.1134/S0869591122060108","DOIUrl":"10.1134/S0869591122060108","url":null,"abstract":"","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 6","pages":"545 - 547"},"PeriodicalIF":1.5,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4064103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralogical, Geochemical, and Nd-Sr Isotope Characteristics of Amphibolites from the Alag-Khadny High-Pressure Complex (SW Mongolia): Intracontinental Rifting as a Precursor of Continental-Margin Subduction 来自 Alag-Khadny 高压复合体(蒙古西南部)的闪长岩的矿物学、地球化学和钕-锶同位素特征:大陆内部断裂是大陆边缘俯冲的前兆
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-09-06 DOI: 10.1134/S0869591122040051
S. Yu. Skuzovatov, M. A. Gornova, A. A. Karimov
{"title":"Mineralogical, Geochemical, and Nd-Sr Isotope Characteristics of Amphibolites from the Alag-Khadny High-Pressure Complex (SW Mongolia): Intracontinental Rifting as a Precursor of Continental-Margin Subduction","authors":"S. Yu. Skuzovatov,&nbsp;M. A. Gornova,&nbsp;A. A. Karimov","doi":"10.1134/S0869591122040051","DOIUrl":"10.1134/S0869591122040051","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Within subduction-accretion complexes, high-pressure rocks (blueschists, eclogites) are commonly juxtaposed with lower-grade rocks, which represent their retrograded counterparts or were involved into accretionary event at later stages, and thus characterize distinct stages of evolution of accretionary belts. In SW Mongolia, the Central Asian Orogenic Belt includes Neoproterozoic–Early Paleozoic paleosubduction complexes represented by eclogites and associated rocks of the Alag-Khadny accretionary complex. This paper reports the results of mineralogical, geochemical and isotopic studies of amphibolites from this complex, the geochemical nature and relationships of which with eclogites have been yet uncertain. The texture of the studied rocks varies from fine- and medium-grained granoblastic and nematoblastic amphibole–plagioclase–epidote rocks to medium-grained nematoblastic amphibole–epidote–albite–titanite amphibolites, which experienced intense recrystallization as a response to late deformations. Primary assemblages include pargasite and Mg-hornblende (&lt;sup&gt;[B]&lt;/sup&gt;Na = 0.07–0.16, &lt;sup&gt;IV&lt;/sup&gt;Al = 0.79–1.69, &lt;sup&gt;[A]&lt;/sup&gt;(Na + K + 2Ca) = 0.14–0.64, &lt;sup&gt;[C]&lt;/sup&gt;(Al+ Ti + Fe&lt;sup&gt;3+&lt;/sup&gt;) = 0.58–1.29, Fe&lt;sup&gt;2+&lt;/sup&gt;/(Fe&lt;sup&gt;2+&lt;/sup&gt; + Mg) = 0.18–0.46 at Fe&lt;sup&gt;3+&lt;/sup&gt;/(Fe&lt;sup&gt;3+&lt;/sup&gt;+Al) = 0.18–0.77), low-to-medium-Ca plagioclase (&lt;i&gt;An&lt;/i&gt;&lt;sub&gt;24–36&lt;/sub&gt;), and epidote–clinozoisite (0.08 &lt; &lt;span&gt;({{X}_{{{text{F}}{{{text{e}}}^{{{text{3 + }}}}}}}})&lt;/span&gt; &lt; 0.16), whereas the retrograde assemblage is represented by albite and Mg-hornblende. Calculations using amphibole composition and amphibole/amphibole–plagioclase thermobarometry revealed peak &lt;i&gt;P-T&lt;/i&gt; conditions up to 570–630°С and 7–9 kbar ascribed to the high-&lt;i&gt;T&lt;/i&gt; epidote-amphibolite facies with subsequent greenschist-facies retrogression. The major-element composition of the amphibolites corresponds to low-alkali moderate-Ti tholeiites, although their trace-element composition varies significantly from N-MORB to E-MORB-type basalts, which are variably enriched in LREE, Nb, Ta, Th, U, and show negative Eu and Ti anomalies due to fractionation of parental melts for precursor rocks. Isotopic composition of Nd (ε&lt;sub&gt;Nd&lt;/sub&gt;(550) from +5.1 to –9.1) and Sr ((&lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr)&lt;sub&gt;550&lt;/sub&gt; = 0.7057–0.7097) indicates distinct mainly moderately-depleted nature of mantle sources for the mafic rocks, but also highlights the involvement of “anomalous” mantle domains with unradiogenic Nd composition. The data supports that the precursor rocks of the amphibolites were formed during intracontinental extension of a continental margin, which was likely linked to opening of a limited Neoproterozoic oceanic basin with a subsequent Late Vendian–Early Cambrian convergence. The medium- to high-pressure metamorphism of amphibolites had similar &lt;i&gt;P-T&lt;/i&gt; conditions to that of retrograde metamorphism of eclogites and associated metasediments and was directly related t","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"523 - 544"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4279408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from the V. Grib Kimberlite, Arkhangelsk Province 阿尔汉格尔斯克省V. Grib金伯利岩中地幔榴辉岩和石榴石辉石岩的交代捕虏体
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-09-06 DOI: 10.1134/S0869591122050046
N. M. Lebedeva, A. A. Nosova, L. V. Sazonova, Y. O. Larionova
{"title":"Metasomatized Xenoliths of Mantle Eclogites and Garnet Pyroxenites from the V. Grib Kimberlite, Arkhangelsk Province","authors":"N. M. Lebedeva,&nbsp;A. A. Nosova,&nbsp;L. V. Sazonova,&nbsp;Y. O. Larionova","doi":"10.1134/S0869591122050046","DOIUrl":"10.1134/S0869591122050046","url":null,"abstract":"<div><p>We investigated mantle eclogite and garnet pyroxenite xenoliths from the V. Grib kimberlite located in the Arkhangelsk diamond province. The eclogites in the lithospheric mantle beneath the Arkhangelsk province were strongly modified by metasomatic processes, which totally obliterated the primary features of protolith. Detailed studies of the xenoliths allowed us to distinguish the following metasomatic events: (1) early mantle metasomatism and (2) interaction with kimberlite melt. During the multiple early mantle metasomatism, primary clinopyroxene and garnet were replaced by metasomatic clinopyroxene, garnet, amphibole, calcite, and phlogopite under the influence of carbonated ultramafic melts. The impact of kimberlite melt caused the dissolution and recrystallisation of solid-phase inclusions and formation of melt pockets consisting of serpentine, chlorite, carbonate, spinel, perovskite, amphibole, recrystallized garnet, and clinopyroxene. En route to the surface in kimberlite melt, the xenoliths were disintegrated and primary garnet and clinopyroxene were metasomatized with increasing Ti and Cr contents, up to formation of high-Cr megacrysts. The garnet pyroxenites are represented by high-Ca, low-Mg and low-Ca, high-Mg types. It is shown that the high-Ca, low-Mg garnet pyroxenites can be the final products of the eclogite xenolith metasomatism by carbonated ultramafic melts. The low-Ca, high-Mg pyroxenites were derived through the interaction of a partial eclogite melt with depleted peridotites.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"479 - 498"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4283588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite–Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic 西伯利亚地台西南部奥诺特花岗岩-绿岩块的元基岩和辉长岩的成分和同位素参数,作为岩石圈地幔从奥陶纪到古近纪演化的指标
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-09-06 DOI: 10.1134/S0869591122040063
O. M. Turkina, A. E. Izokh, A. V. Lavrenchuk, Ya. Yu. Shelepov
{"title":"Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite–Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic","authors":"O. M. Turkina,&nbsp;A. E. Izokh,&nbsp;A. V. Lavrenchuk,&nbsp;Ya. Yu. Shelepov","doi":"10.1134/S0869591122040063","DOIUrl":"10.1134/S0869591122040063","url":null,"abstract":"<p>The paper summarizes major and trace-element compositions and Sm–Nd isotope data on metabasites (amphibolites) and gabbroids of the Onot granite–greenstone block in the Sharyzhalgai basement uplift, southwestern Siberian craton. The Onot block consists of tectonically combined nappes of the Paleoarchean tonalite–trondhjemite–granodiorite (TTG) complex and the metasedimentary-volcanic complex of the greenstone belt (GB). The Mezoarchean (∼2.88 Ga) metabasalts of the greenstone belt and Paleoproterozoic (∼1.86 Ga) gabbronorites and vein gabbros were formed at rifting and postcollisional extension, respectively. The Archean metabasites of the greenstone belt and enclaves in the TTG complex compositionally correspond to low-Ti tholeiitic basalts and basaltic andesites. The basaltic rocks are characterized by flat REE patterns [(La/Sm)<sub>n</sub> = 0.9–1.9], depletion in Nb relative to Th and La (Nb/Nb* = 0.4–1.1), and a wide range of mostly positive ε<sub>Nd</sub>(T) values (from +5.2 to –1.0). The enrichment of the basaltic andesite in incompatible elements, its Eu minimum, and negative ε<sub>Nd</sub>(T) values resulted from contamination by Paleoarchean TTG gneisses, that form the basement of GB. The Paleoproterozoic gabbronorites have high Mg# and extremely low concentrations of Ti and incompatible elements. The rocks are characterized by low (Nb/Y)<sub>PМ</sub> (0.8–1.0), negative ε<sub>Nd</sub>(T) values (from 0 to –1.4), and weak enrichment in Th and LREE relative to Nb. The vein gabbros have low (La/Sm)<sub>n</sub>, positive ε<sub>Nd</sub>(T) values of +2.8 and +0.3, and a negative Nb anomaly (Nb/Nb* = 0.3–0.4). The trace element-composition of the amphibolites, gabbronorites, and gabbros and the results of geochemical modeling indicate that the parental melts were derived mainly from weakly depleted mantle sources. The Nd isotope composition of the Paleoproterozoic gabbroids resulted from the evolution of the heterogeneous Archean lithospheric mantle. Variations in the isotope and trace-element composition of the amphibolites reflect the initially depleted nature of the Mezoarchean mantle and its metasomatic alteration by fluids/melts, which occurred before its melting at ∼2.88 Ga. The geochemical and Nd isotopic characteristics of gabbronorites and gabbros indicate that the lithospheric mantle had become progressively more heterogeneous by the Paleoproterozoic due to preceding Archean processes. The variable depletion of both the Archean and the Paleoproterozoic mafic rocks in Nb relative to Th and La may be explained by mantle metasomatism and does not reflect the geodynamic settings of the mafic magmatism.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"499 - 522"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4283576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Pauzhetka Caldera (South Kamchatka): Еxploring Temporal Evolution and Origin of Voluminous Silicic Magmatism 南堪察加保哲特卡火山口:Еxploring大体积硅质岩浆作用的时间演化与成因
IF 1.5 4区 地球科学
Petrology Pub Date : 2022-09-06 DOI: 10.1134/S0869591122050022
V. O. Davydova, I. N. Bindeman, M. D. Shchekleina, S. N. Rychagov
{"title":"Pauzhetka Caldera (South Kamchatka): Еxploring Temporal Evolution and Origin of Voluminous Silicic Magmatism","authors":"V. O. Davydova,&nbsp;I. N. Bindeman,&nbsp;M. D. Shchekleina,&nbsp;S. N. Rychagov","doi":"10.1134/S0869591122050022","DOIUrl":"10.1134/S0869591122050022","url":null,"abstract":"<div><p>The Pauzhetka Caldera (27 × 18 km) was formed in the South Kamchatka during the Golygin Ignimbrite eruption (420–440 ka), the largest known eruption in the region in the past 1 Myr. The eruption was preceded by the 3 Ma-old mafic and intermediate volcanism. After the caldera-forming eruption, a variety of products, from basalt to rhyolite, were ejected within the caldera. For understanding the origin of voluminous silicic magmatism in thin mafic South Kamchatka crust, we used geochemical and isotope data. Our research has characterized the major and trace element composition of Golygin ignimbrite, intra-caldera hydrothermally altered deposits, pre-caldera (Mt. Orlinoe Krylo, Mt. Klyuchevskaya) and post-caldera (Kambalny Ridge, Chernye Skaly) eruptive centers. The Sr–Nd isotope composition of the Golygin ignimbrite and some eruptive post-caldera products was investigated. The isotope variations indicate that parental magmas for all rocks of the Pauzhetka area were obtained from a weakly evolved source derived through fluid-assisted melting of a subducted slab. Geochemical data support that the formation of most magmas of the Pauzhetka caldera was mainly controlled by fractional crystallization in the lower to middle crust. MELTS-modelling agrees with geochemical data. The fractional crystallization of Kambalny basalt with 2 wt % H<sub>2</sub>O at 6 kbar provides the best fit to the observed composition of the Golygin dacite.</p></div>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"30 5","pages":"462 - 478"},"PeriodicalIF":1.5,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4277323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信